Fast calculation of boundary crossing probabilities for Poisson processes

The boundary crossing probability of a Poisson process with n jumps is a fundamental quantity with numerous applications. We present a fast O(n2logn) algorithm to calculate this probability for arbitrary upper and lower boundaries.

[1]  J. Durbin Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test , 1971, Journal of Applied Probability.

[2]  V. F. Kotel’nikova,et al.  On Computing the Probability of an Empirical Process not Crossing a Curvilinear Boundary , 1983 .

[3]  D. Matthews Exact Nonparametric Confidence Bands for the Survivor Function , 2013, The international journal of biostatistics.

[4]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[5]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[6]  J. Bouchaud,et al.  Some applications of first-passage ideas to finance , 2013, 1306.3110.

[7]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[8]  Jesse Frey,et al.  Optimal distribution-free confidence bands for a distribution function , 2008 .

[9]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[10]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[11]  Jian Li,et al.  Higher criticism: $p$-values and criticism , 2014, 1411.1437.

[12]  Thomas Friedrich,et al.  Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test , 1998 .

[13]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[14]  Douglas H. Jones,et al.  Goodness-of-fit test statistics that dominate the Kolmogorov statistics , 1979 .

[15]  Boaz Nadler,et al.  On the exact Berk-Jones statistics and their p-value calculation , 2013, 1311.3190.

[16]  Jon A. Wellner,et al.  Empirical Processes with Applications to Statistics. , 1988 .

[17]  G. Vandewiele,et al.  The Calculation of Distributions of Kolmogorov-Smirnov Type Statistics Including a Table of Significance Points for a Particular Case , 1968 .

[18]  J. Wellner,et al.  GOODNESS-OF-FIT TESTS VIA PHI-DIVERGENCES , 2006, math/0603238.

[19]  J. Durbin Distribution theory for tests based on the sample distribution function , 1973 .

[20]  K. Worsley Confidence regions and tests for a change-point in a sequence of exponential family random variables , 1986 .

[21]  E. Khmaladze,et al.  Calculation of noncrossing probabilities for Poisson processes and its corollaries , 2001, Advances in Applied Probability.

[22]  G. P. Steck Rectangle Probabilities for Uniform Order statistics and the Probability That the Empirical Distribution Function Lies Between Two Distribution Functions , 1971 .

[23]  J. Durbin,et al.  1. Distribution Theory for Tests Based on the Sample Distribution Function , 1973 .

[24]  D. Siegmund Boundary Crossing Probabilities and Statistical Applications , 1986 .

[25]  Marc Noe,et al.  The Calculation of Distributions of Two-Sided Kolmogorov-Smirnov Type Statistics , 1972 .

[26]  Art B. Owen,et al.  Nonparametric Likelihood Confidence Bands for a Distribution Function , 1995 .

[27]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[28]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[29]  Sun Dongchu,et al.  Exact computation for some sequential tests , 1998 .