Wall cratering upon high velocity normal dust impact

[1]  R. Pitts,et al.  Remobilized dust dynamics and inventory evolution in ITER-like start-up plasmas , 2022, Plasma Physics and Controlled Fusion.

[2]  A. Bortolon,et al.  Dust and powder in fusion plasmas: recent developments in theory, modeling, and experiments , 2022, Reviews of Modern Plasma Physics.

[3]  B. Esposito,et al.  Evidence for high-velocity solid dust generation induced by runaway electron impact in FTU , 2022, Nuclear Fusion.

[4]  S. Ratynskaia,et al.  Modelling of dust generation, transport and remobilization in full-metal fusion reactors , 2022, Plasma Physics and Controlled Fusion.

[5]  G. Bonny,et al.  Analysis of hypervelocity impacts: the tungsten case , 2021, Nuclear Fusion.

[6]  David Veysset,et al.  High-velocity micro-projectile impact testing , 2021 .

[7]  R. Pitts,et al.  The MEMOS-U code description of macroscopic melt dynamics in fusion devices , 2021 .

[8]  J. Contributors,et al.  Resolidification-controlled melt dynamics under fast transient tokamak plasma loads , 2020, Nuclear Fusion.

[9]  M. Horányi,et al.  The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors , 2020 .

[10]  J. Holgate,et al.  Spontaneous rapid rotation and breakup of metal droplets in tokamak edge plasmas , 2019, EPL (Europhysics Letters).

[11]  E. Giovannozzi,et al.  Pre-plasma remobilization of ferromagnetic dust in FTU and possible interference with tokamak operations , 2019, Nuclear Fusion.

[12]  C. Silva,et al.  Numerical simulation of the initial stage of unipolar arcing in fusion-relevant conditions , 2019, Plasma Physics and Controlled Fusion.

[13]  K. Nelson,et al.  Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer , 2019, Applied Surface Science.

[14]  K. Nelson,et al.  Melt-driven erosion in microparticle impact , 2018, Nature Communications.

[15]  R. Pitts,et al.  Survival and in-vessel redistribution of beryllium droplets after ITER disruptions , 2018 .

[16]  K. Nelson,et al.  In-situ observations of single micro-particle impact bonding , 2018 .

[17]  M. D. Angeli,et al.  Experimental validation of the analytical model for tungsten dust - wall mechanical impacts incorporated in the MIGRAINe dust dynamics code , 2017 .

[18]  P. Tolias,et al.  Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications , 2017, 1703.06302.

[19]  S. Bozhenkov,et al.  Fast camera observations of injected and intrinsic dust in TEXTOR , 2015 .

[20]  G. Temmerman,et al.  Highly resolved measurements of dust motion in the sheath boundary of magnetized plasmas , 2015 .

[21]  A. Litnovsky,et al.  Dust remobilization in fusion plasmas under steady state conditions , 2015, 1508.06156.

[22]  G. Temmerman,et al.  Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments , 2015 .

[23]  S. Ratynskaia,et al.  Dust–wall and dust–plasma interaction in the MIGRAINe code , 2014 .

[24]  E. Lazzaro,et al.  Migration of tungsten dust in tokamaks: role of dust–wall collisions , 2013 .

[25]  R. Srama,et al.  Measurements of freely-expanding plasma from hypervelocity impacts , 2012 .

[26]  F. Hörz Cratering and penetration experiments in aluminum and teflon: Implications for space‐exposed surfaces , 2012 .

[27]  D. Benson,et al.  Modeling of velocity distributions of dust in tokamak edge plasmas and dust–wall collisions , 2009 .

[28]  Joachim Roth,et al.  Recent analysis of key plasma wall interactions issues for ITER , 2009 .

[29]  E. Giovannozzi,et al.  In situ dust detection in fusion devices , 2008 .

[30]  Tobias Schmidt,et al.  Development of a generalized parameter window for cold spray deposition , 2006 .

[31]  Martin Rein,et al.  Cold spray deposition: Significance of particle impact phenomena , 2005 .

[32]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .

[33]  Raymond M. Brach,et al.  Experiments and Engineering Models of Microparticle Impact and Deposition , 2000 .

[34]  Colin Tudge,et al.  Planet , 1999 .

[35]  W. John Particle-Surface Interactions: Charge Transfer, Energy Loss, Resuspension, and Deagglomeration , 1996 .

[36]  Eberhard Grün,et al.  The penetration limit of thin films , 1980 .

[37]  G. Eichhorn Primary velocity dependence of impact ejecta parameters , 1978 .

[38]  G. Eichhorn Analysis of the hypervelocity impact process from impact flash measurements , 1976 .

[39]  Frank Schäfer,et al.  Time-resolved Emission Spectroscopy of Impact Plasma , 2013 .

[40]  Kevin R. Housen,et al.  Ejecta from impact craters , 2011 .

[41]  E. Giovannozzi,et al.  Hypervelocity dust impacts in FTU scrape-off layer , 2008 .

[42]  Michael J. Cole,et al.  Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury , 1999 .

[43]  M. J. Drake,et al.  The Moon , 1904, Nature.