Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent.

[1]  M. Thanou,et al.  Targeting nanoparticles to cancer. , 2010, Pharmacological research.

[2]  Akira Makino,et al.  Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. , 2009, Biomaterials.

[3]  M. Panesar,et al.  Nephrogenic Systemic Fibrosis , 2008, American Journal of Nephrology.

[4]  Shao-Pow Lin,et al.  MR contrast agents: Physical and pharmacologic basics , 2007, Journal of magnetic resonance imaging : JMRI.

[5]  R. Crichton,et al.  High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. , 2007, Journal of molecular biology.

[6]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[7]  Y. Terakado,et al.  Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: Significance of anthropogenic Gd , 2006 .

[8]  G. Cravotto,et al.  New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(III)-complexes and β- or γ-cyclodextrin units anchored to chitosan , 2006 .

[9]  D. Parker,et al.  PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. , 2005, Biomacromolecules.

[10]  E. Şimşek,et al.  Magic ferritin: A novel chemotherapeutic encapsulation bullet , 2005 .

[11]  Elizabeth C. Theil,et al.  Ferritins: dynamic management of biological iron and oxygen chemistry. , 2005, Accounts of chemical research.

[12]  Vladimir P Torchilin,et al.  Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[13]  Silvio Aime,et al.  Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. , 2002, Angewandte Chemie.

[14]  R K Jain,et al.  Openings between defective endothelial cells explain tumor vessel leakiness. , 2000, The American journal of pathology.

[15]  Enzo Terreno,et al.  Contrast agents for magnetic resonance angiographic applications: 1H and 17O NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin , 1999, JBIC Journal of Biological Inorganic Chemistry.

[16]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[17]  R K Jain,et al.  Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. , 1999, Cancer research.

[18]  C. Passirani,et al.  Long-Circulating Nanopartides Bearing Heparin or Dextran Covalently Bound to Poly(Methyl Methacrylate) , 1998, Pharmaceutical Research.

[19]  D. Ripoll,et al.  Calculated electrostatic gradients in recombinant human H‐chain ferritin , 1998, Protein science : a publication of the Protein Society.

[20]  Jurriaan Huskens,et al.  Alkaline Earth Metal and Lanthanide(III) Complexes of Ligands Based upon 1,4,7,10-Tetraazacyclododecane-1,7-bis(acetic acid). , 1997, Inorganic chemistry.

[21]  N. Chasteen,et al.  Molecular diffusion into horse spleen ferritin: a nitroxide radical spin probe study. , 1996, Biophysical journal.

[22]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[23]  Elizabeth C. Theil,et al.  High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. , 1995, Journal of molecular biology.

[24]  K. Nagayama,et al.  Permeation of small molecules into the cavity of ferritin as revealed by proton nuclear magnetic resonance relaxation. , 1995, The Biochemical journal.

[25]  Michael F. Tweedle,et al.  Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates) , 1994 .

[26]  J. Frame,et al.  Molecular entrapment of small molecules within the interior of horse spleen ferritin. , 1994, Archives of biochemistry and biophysics.

[27]  A. Sherry,et al.  Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N,N',N"-triacetic acid and 1,4,7,10-tetraazacyclododecane-N,N',N",N'''-tetraacetic acid , 1987 .

[28]  R. Axén,et al.  Chemical fixation of enzymes to cyanogen halide activated polysaccharide carriers. , 1971, European journal of biochemistry.

[29]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[30]  Akira Makino,et al.  Near-infrared fluorescent labeled peptosome for application to cancer imaging. , 2008, Bioconjugate chemistry.

[31]  D. Tsernoglou,et al.  The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site , 2000, Nature Structural Biology.

[32]  C. Allen Chang,et al.  Capillary electrophoresis, potentiometric and laser excited luminescence studies of lanthanide(III) complexes of 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane (DO2A)† , 1998 .

[33]  E. Dellacherie,et al.  Polymeric conjugates of Gd(3+)-diethylenetriaminepentaacetic acid and dextran. 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. , 1998, Bioconjugate chemistry.

[34]  E. Chiancone,et al.  Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. , 1996, Archives of biochemistry and biophysics.

[35]  W. Cacheris,et al.  The relationship between thermodynamics and the toxicity of gadolinium complexes. , 1990, Magnetic resonance imaging.