Generalized robust gain-scheduled PID controller design for affine LPV systems with polytopic uncertainty

In the paper a generalized guaranteed cost output-feedback robust gain-scheduled PID controller synthesis is presented for affine linear parameter-varying systems under polytopic model uncertainty. The controller synthesis is generalized in a sense that it covers robust, robust gain-scheduled, and robust switched (with arbitrary switching algorithm) PID controller design. The proposed centralized/decentralized controller method is based on Bellman–Lyapunov equation, guaranteed cost, and parameter-dependent quadratic stability. The proposed sufficient robust stability and performance conditions are derived in the form of bilinear matrix inequalities (BMI) which can efficiently be solved or further linearized. As the main result, the suggested performance and stability conditions without any restriction on the controller structure are convex functions of the scheduling and uncertainty parameters. Hence, there is no need for applying multi-convexity or other relaxation techniques and consequently the proposed solution delivers a less conservative design method. The viability of the novel design technique is demonstrated and evaluated through numerical examples.

[1]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[2]  Alireza Karimi,et al.  Fixed-structure LPV discrete-time controller design with induced l2-norm and performance , 2016, Int. J. Control.

[3]  Peter Seiler,et al.  Stability Analysis With Dissipation Inequalities and Integral Quadratic Constraints , 2015, IEEE Transactions on Automatic Control.

[4]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[5]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[6]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[7]  Carsten W. Scherer,et al.  A synthesis framework for robust gain-scheduling controllers , 2014, Autom..

[8]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[9]  Lawton H. Lee,et al.  Control of linear parameter-varying systems using dynamic parameter measurement , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  M. Ksouri,et al.  Static output feedback control for LPV systems under affine uncertainty structure , 2013, 3rd International Conference on Systems and Control.

[11]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[12]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[13]  Guoliang Wei,et al.  A Survey on Gain-Scheduled Control and Filtering for Parameter-Varying Systems , 2014 .

[14]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[15]  Adrian Ilka,et al.  Unified Robust Gain-Scheduled and Switched Controller Design for Linear Continuous-Time Systems , 2015 .

[16]  Vojtech Veselý,et al.  Gain–Scheduled Controller Design: Variable Weighting Approach , 2013 .

[17]  E. Nobuyama,et al.  Stability analysis and control synthesis with D.C. relaxation of parameterized LMIS , 2003, 2003 European Control Conference (ECC).

[18]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[19]  Vojtech Veselý,et al.  Robust PID‐PSD Controller Design: BMI Approach , 2013 .

[20]  P. Apkarian,et al.  Relaxations of parameterized LMIs with control applications , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[21]  Liu Yifan,et al.  Finite-time stability analysis and controller synthesis for switched linear parameter-varying systems , 2014, Proceedings of the 33rd Chinese Control Conference.

[23]  Johan Löfberg,et al.  LPV H2-Controller Synthesis Using Nonlinear Programming , 2011 .

[24]  Tomas McKelvey,et al.  Robust Gain-Scheduled PSD Controller Design from Educational Perspective , 2016 .

[25]  Masayuki Sato,et al.  Gain-scheduled output feedback controllers for discrete-time LPV systems using bounded inexact scheduling parameters , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[26]  Vojtech Veselý,et al.  Robust Gain Scheduling Control Design in Frequency Domain , 2014 .

[27]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems , 2013, Autom..

[28]  I.E. Kose,et al.  A direct characterization of L/sub 2/-gain controllers for LPV systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[29]  Jakob Stoustrup,et al.  Structured control of affine linear parameter varying systems , 2011, Proceedings of the 2011 American Control Conference.

[30]  Vojtech Veselý,et al.  Design of robust gain-scheduled PI controllers , 2015, J. Frankl. Inst..

[31]  Vojtech Veselý,et al.  Gain-scheduled PID controller design , 2013 .

[32]  Michael Stingl,et al.  PENLAB: A MATLAB solver for nonlinear semidefinite optimization , 2013 .

[33]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[34]  Shu Wang,et al.  Robust synthesis for linear parameter varying systems using integral quadratic constraints , 2014, 53rd IEEE Conference on Decision and Control.

[35]  Fan Wang,et al.  Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems , 2002, IEEE Trans. Autom. Control..

[36]  Ruth F. Curtain,et al.  Linear-quadratic control: An introduction , 1997, Autom..

[37]  Masayuki Sato Discrete-time Gain-Scheduled Output-Feedback controllers exploiting inexact scheduling parameters , 2011, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).

[38]  Eitaku Nobuyama,et al.  Difference of multiconvex relaxation of parameterized LMIs: control applications , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[39]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[40]  J. Daafouz,et al.  Parameter-dependent state observer design for affine LPV systems , 2001 .

[41]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[42]  Masayuki Sato Filter design for LPV systems using quadratically parameter-dependent Lyapunov functions , 2006, Autom..

[43]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[44]  Azita Dabiri,et al.  Distributed LPV State-Feedback Control Under Control Input Saturation , 2017, IEEE Transactions on Automatic Control.