Short‐Term Wind Speed Forecasting for Power System Operations

L'accent mis sur les énergies renouvelables et les inquiétudes environnementales ont conduit, dans le monde entier, à un développement considérable des techniques éoliennes. Ces énergies, toutefois, ne sont pas sans poser des défis importants, liés au caractère intermittent et instable du vent. Les prévisions à court terme dans ce domaine sont d'une importance cruciale pour une mise en oeuvre fiable des systèmes d'exploitation. Cet article commence par une vue d'ensemble de l'état actuel des connaissances en matière de ressources d'énergie éolienne. Il passe ensuite en revue plusieurs modèles de prédiction à court terme des vitesses des vents comprenant, en particulier, les approches chronologiques traditionnelles, ainsi que certains modèles plus raffinés fondés sur les modèles du type spatio‐temporel. Nous poursuivons avec une discussion de la précision des prévisions, en mettant l'accent sur le choix de fonctions de perte appropriées. Quelques défis nouveaux liés aux changements soudains des vents et aux énergies éoliennes offshores sont aussi présentés.

[1]  J. Scott Armstrong,et al.  Long-Range Forecasting. , 1979 .

[2]  A. H. Murphy,et al.  Time Series Models to Simulate and Forecast Wind Speed and Wind Power , 1984 .

[3]  Benito E. Flores,et al.  A pragmatic view of accuracy measurement in forecasting , 1986 .

[4]  Kenneth Rogoff,et al.  Was It Real? The Exchange Rate‐Interest Differential Relation over the Modern Floating‐Rate Period , 1988 .

[5]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[6]  L. Kamal,et al.  Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan , 1997 .

[7]  Henrik Madsen,et al.  A new reference for wind power forecasting , 1998 .

[8]  Gerd Tetzlaff,et al.  Wind Speed Forecasting from 1 to 30 Minutes , 1998 .

[9]  P. S. Dokopoulos,et al.  Wind speed and power forecasting based on spatial correlation models , 1999 .

[10]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[11]  Athanasios Sfetsos,et al.  A comparison of various forecasting techniques applied to mean hourly wind speed time series , 2000 .

[12]  P. Dokopoulos,et al.  A fuzzy expert system for the forecasting of wind speed and power generation in wind farms , 2001, PICA 2001. Innovative Computing for Power - Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No.01CH37195).

[13]  E. Ronchetti,et al.  Robust Tests of Predictive Accuracy , 2002 .

[14]  Athanasios Sfetsos,et al.  A novel approach for the forecasting of mean hourly wind speed time series , 2002 .

[15]  Gregor Giebel,et al.  The State-Of-The-Art in Short-Term Prediction of Wind Power. A Literature Overview , 2003 .

[16]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[17]  Detlev Heinemann,et al.  PREVIENTO meets HORNS REV Short-Term Wind-Power Prediction - adaptation to Offshore Sites , 2003 .

[18]  Philippe Crochet,et al.  Adaptive Kalman filtering of 2‐metre temperature and 10‐metre wind‐speed forecasts in Iceland , 2004 .

[19]  J.B. Theocharis,et al.  A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation , 2004, IEEE Transactions on Energy Conversion.

[20]  J. A. Carta,et al.  Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study , 2005 .

[21]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[22]  Marc G. Genton,et al.  Predictive spatio-temporal models for spatially sparse environmental data , 2005 .

[23]  Jan Holst,et al.  Forecasting near-surface ocean winds with Kalman filter techniques , 2005 .

[24]  Georges Kariniotakis,et al.  Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. , 2005 .

[25]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[26]  M. Lange,et al.  Forecasting offshore wind speeds above the North Sea , 2005 .

[27]  Eric M. Aldrich,et al.  Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center , 2006 .

[28]  WAVE FORECASTING FOR OFFSHORE WIND FARMS , 2006 .

[29]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[30]  Marc G. Genton,et al.  Blowing in the wind , 2007 .

[31]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[32]  P. Pinson,et al.  Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power , 2007, IEEE Transactions on Power Systems.

[33]  J. A. Carta,et al.  Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago , 2007 .

[34]  Tilmann Gneiting,et al.  Editorial: Probabilistic forecasting , 2008 .

[35]  L. Held,et al.  Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds , 2008 .

[36]  Kesten C. Green Assessing probabilistic forecasts about particular situations , 2008 .

[37]  José A. Carta,et al.  Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation , 2008 .

[38]  M. Genton,et al.  Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .

[39]  Sven F. Crone,et al.  Forecasting and operational research: a review , 2008, J. Oper. Res. Soc..

[40]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[41]  W. Rivera,et al.  Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks , 2009 .

[42]  Vladimiro Miranda,et al.  Wind power forecasting : state-of-the-art 2009. , 2009 .

[43]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[44]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[45]  R. Tsay Analysis of Financial Time Series: Tsay/Financial Time Series 3E , 2010 .

[46]  Chandrika Kamath,et al.  Understanding wind ramp events through analysis of historical data , 2009, IEEE PES T&D 2010.

[47]  P. McSharry,et al.  Approaches for multi-step density forecasts with application to aggregated wind power , 2010, 1003.0996.

[48]  M. Genton,et al.  Powering Up With Space-Time Wind Forecasting , 2010 .

[49]  Robin Girard,et al.  Forecasting Uncertainty Related to Ramps of Wind Power Production , 2010 .

[50]  Bruce H. Krogh,et al.  Wind Integration in Power Systems: Operational Challenges and Possible Solutions , 2011, Proceedings of the IEEE.

[51]  Amanda S. Hering,et al.  Comparing Spatial Predictions , 2011, Technometrics.

[52]  Andrew D. Stern,et al.  Forecasting the Wind to Reach Significant Penetration Levels of Wind Energy , 2011 .

[53]  T. Gneiting Quantiles as optimal point forecasts , 2011 .

[54]  Henrik Madsen,et al.  Adaptive modelling and forecasting of offshore wind power fluctuations with Markov‐switching autoregressive models , 2012 .

[55]  Jooyoung Jeon,et al.  Using Conditional Kernel Density Estimation for Wind Power Density Forecasting , 2012 .

[56]  Pierre Pinson,et al.  Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations , 2012 .

[57]  J. M. Sloughter,et al.  Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging , 2010 .

[58]  Hans-Peter Waldl,et al.  ASSESSING THE UNCERTAINTY OF WIND POWER PREDICTIONS WITH REGARD TO SPECIFIC WEATHER SITUATIONS , 2022 .

[59]  Detlev Heinemann,et al.  ACCURACY OF SHORT TERM WIND POWER PREDICTIONS DEPENDING ON METEOROLOGICAL CONDITIONS , 2022 .