Multistep-ahead Streamflow and Reservoir Level Prediction Using ANNs for Production Planning in Hydroelectric Stations
暂无分享,去创建一个
[1] M. R. A. Calado,et al. Optimal Hydro-Wind Power Generation for Day-Ahead Pool Market , 2015, IEEE Latin America Transactions.
[2] Fernanda Strozzi,et al. Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks , 2000 .
[3] Arka Ghosh,et al. Hybrid Optimized Back propagation Learning Algorithm For Multi-layer Perceptron , 2012, ArXiv.
[4] Richard A. Davis,et al. Introduction to time series and forecasting , 1998 .
[5] Shilpi Rani,et al. Predicting Reservoir Water Level UsingArtificial Neural Network , 2014 .
[6] A. Quichimbo,et al. Predicción de caudales en la cabecera de la cuenca del Paute mediante el modelo DBM , 2016 .
[7] Muhammad Adil Ansari,et al. Nonlinear System Identification Using Neural Network , 2012 .
[8] Aw Salami,et al. Modelling of Hydropower Reservoir Variables for Energy Generation: Neural Network Approach , 2013 .
[9] Ac Igboanugo,et al. Predicting Water Levels at Kainji Dam Using Artificial Neural Networks , 2013 .
[10] Garrido Bullón,et al. Identificación, estimación y control de sistemas no-lineales mediante RGO , 2000 .
[11] J. Veintimilla,et al. Redes Neuronales Artificiales (RNA) aplicadas en la prediccion de caudales para intervalos de tiempo horarios , 2014 .
[12] José Roberto Camacho,et al. A Contribution to the Study of the Estimate Hydroelectric Potential for Small Hydropower Plant , 2016 .
[13] J. D. Velásquez,et al. Streamflow Prediction using a Forecast Combining System , 2015, IEEE Latin America Transactions.
[14] Victor Hinojosa,et al. PRONÓSTICO DE CAUDALES DE MEDIANO Y CORTO PLAZO UTILIZANDO RAZONAMIENTO INDUCTIVO FUZZY Y ALGORITMOS EVOLUTIVOS – APLICACIÓN PARA LAS CENTRALES DE EMBALSE Y CENTRALES DE PASADA , 2008 .