Experimenting a "General Purpose" Textual Entailment Learner in AVE

In this paper we present the use of a "general purpose" textual entailment recognizer in the Answer Validation Exercise (AVE) task. Our system is designed to learn entailment rules from annotated examples. Its main feature is the use of Support Vector Machines (SVMs) with kernel functions based on cross-pair similarity between entailment pairs. We experimented with our system using different training sets: RTE and AVE data sets. The comparative results show that entailment rules can be learned. Although, the high variability of the outcome prevents us to derive definitive conclusions, the results show that our approach is quite promising and improvable in the future.

[1]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[2]  Jean-Philippe Tarel,et al.  Non-Mercer Kernels for SVM Object Recognition , 2004, BMVC.

[3]  Rada Mihalcea,et al.  Measuring the Semantic Similarity of Texts , 2005, EMSEE@ACL.

[4]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[5]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[6]  Johan Bos,et al.  Recognising Textual Entailment with Logical Inference , 2005, HLT.

[7]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[8]  Dan Roth,et al.  An Inference Model for Semantic Entailment in Natural Language , 2005, IJCAI.

[9]  Fredric C. Gey,et al.  ENSM-SE at CLEF 2006 : Fuzzy Proximity Method with an Adhoc Influence Function in Evaluation of Multilingual and Multi-modal Information Retrieval 7th Workshop of the Cross-Language Evaluation Forum, CLEF 2006, Alicante, Spain , 2007 .

[10]  Ido Dagan,et al.  PROBABILISTIC TEXTUAL ENTAILMENT: GENERIC APPLIED MODELING OF LANGUAGE VARIABILITY , 2004 .

[11]  M. Felisa Verdejo,et al.  Overview of the Answer Validation Exercise 2006 , 2006, CLEF.

[12]  Alessandro Moschitti,et al.  Automatic Learning of Textual Entailments with Cross-Pair Similarities , 2006, ACL.

[13]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[14]  Ido Dagan,et al.  Web Based Probabilistic Textual Entailment , 2005 .

[15]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[16]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  John A. Carroll,et al.  Applied morphological processing of English , 2001, Natural Language Engineering.

[18]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[20]  Alessandro Moschitti Syntactic Kernels for Natural Language Learning: the Semantic Role Labeling Case , 2006, HLT-NAACL.

[21]  Steven Abney,et al.  Part-of-Speech Tagging and Partial Parsing , 1997 .

[22]  Bernardo Magnini,et al.  Tree edit distance for textual entailment , 2007 .

[23]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[24]  Alessandro Moschitti,et al.  Making Tree Kernels Practical for Natural Language Learning , 2006, EACL.

[25]  Ido Dagan,et al.  Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment, First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers , 2006, MLCW.

[26]  Bernardo Magnini,et al.  Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment , 2005, MLCW.

[27]  M. Felisa Verdejo,et al.  Overview of the Answer Validation Exercise 2007 , 2007, CLEF.

[28]  Thorsten Joachims,et al.  Making large-scale support vector machine learning practical , 1999 .