Multisubunit RNA polymerases.

Transcription of the genetic information in all cells is carried out by multisubunit RNA polymerases (RNAPs). Comparison of the crystal structures of a bacterial and a eukaryotic RNAP reveals a conserved core that comprises the active site and a multifunctional clamp. Together with a further structure of eukaryotic RNAP bound to DNA and RNA, these results elucidate many aspects of the transcription mechanism, including initiation, elongation, nucleotide addition, processivity and proofreading.

[1]  F Werner,et al.  Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. , 2001, Molecular cell.

[2]  A. Greenleaf,et al.  Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila , 2004, Molecular and General Genetics MGG.

[3]  K. Mukherjee,et al.  Studies on the omega subunit of Escherichia coli RNA polymerase--its role in the recovery of denatured enzyme activity. , 1997, European journal of biochemistry.

[4]  R. Young,et al.  Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Cheong,et al.  Human RPB5, a subunit shared by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and may play a role in X transactivation. , 1995, The EMBO journal.

[6]  V. Markovtsov,et al.  Mapping of Catalytic Residues in the RNA Polymerase Active Center , 1996, Science.

[7]  R. Ebright,et al.  Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Darst,et al.  Bacterial RNA polymerase. , 2001, Current opinion in structural biology.

[9]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[10]  R. Burgess,et al.  Mutational Analysis of β′260–309, a ς70 Binding Site Located on Escherichia coliCore RNA Polymerase* , 2000, The Journal of Biological Chemistry.

[11]  K. Severinov RNA polymerase structure-function: insights into points of transcriptional regulation. , 2000, Current opinion in microbiology.

[12]  J. Reeve,et al.  Methanobacterium thermoautotrophicum RNA Polymerase and Transcription In Vitro , 1999, Journal of bacteriology.

[13]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[14]  R. Ebright,et al.  Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. , 2000, Genes & development.

[15]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[16]  E. Nudler Transcription elongation: structural basis and mechanisms. , 1999, Journal of molecular biology.

[17]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[18]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[19]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[20]  M. Kashlev,et al.  Crucial role of the RNA:DNA hybrid in the processivity of transcription. , 1998, Molecular cell.

[21]  N. Proudfoot,et al.  Connecting transcription to messenger RNA processing. , 2000, Trends in biochemical sciences.

[22]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[23]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[24]  P. Brick,et al.  Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Archambault,et al.  Rpo26p, a subunit common to yeast RNA polymerases, is essential for the assembly of RNA polymerases I and II and for the stability of the largest subunits of these enzymes , 1996, Molecular and cellular biology.

[26]  E J Steinmetz,et al.  Pre-mRNA Processing and the CTD of RNA Polymerase II: The Tail That Wags the Dog? , 1997, Cell.

[27]  R. Burgess,et al.  Localization of a ς70 Binding Site on the N Terminus of the Escherichia coli RNA Polymerase β′ Subunit* , 1998, The Journal of Biological Chemistry.

[28]  R. Weisberg,et al.  Modification of the properties of elongating RNA polymerase by persistent association with nascent antiterminator RNA. , 2001, Molecular cell.

[29]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[30]  A. Gnatt,et al.  Formation and Crystallization of Yeast RNA Polymerase II Elongation Complexes* , 1997, The Journal of Biological Chemistry.

[31]  R. Landick,et al.  Allosteric Control of RNA Polymerase by a Site That Contacts Nascent RNA Hairpins , 2001, Science.

[32]  J. Manley,et al.  RNA polymerase II and the integration of nuclear events. , 2000, Genes & development.

[33]  R. Burgess,et al.  A Coiled-Coil from the RNA Polymerase β′ Subunit Allosterically Induces Selective Nontemplate Strand Binding by σ70 , 2001, Cell.

[34]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[35]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[36]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[37]  R. Landick RNA Polymerase Clamps Down , 2001, Cell.

[38]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[39]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[40]  K. Severinov,et al.  Identification of RNA Polymerase β′ Subunit Segment Contacting the Melted Region of the lacUV5 Promoter* , 2000, The Journal of Biological Chemistry.

[41]  P. Cramer,et al.  Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. , 2001, Structure.

[42]  Younggyu Kim,et al.  Structural Organization of the RNA Polymerase-Promoter Open Complex , 2000, Cell.

[43]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[44]  Topology of yeast RNA polymerase II subunits in transcription elongation complexes studied by photoaffinity cross-linking. , 2000, Biochemistry.

[45]  R. Ebright RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. , 2000, Journal of molecular biology.

[46]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[47]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[48]  E. Geiduschek,et al.  The orientation of DNA in an archaeal transcription initiation complex , 2000, Nature Structural Biology.