Global flows of energetic ions in Jupiter's equatorial plane: First‐order approximation

Galileo, as the first orbiting spacecraft in an outer planet's magnetosphere, provides the opportunity to study global energetic ion distributions in Jupiter's magnetosphere. We present directional anisotropies of energetic ion distributions measured by the Galileo Energetic Particles Detector (EPD). The EPD measurements of proton (80–1050 keV), oxygen (26–562 keV/nucleon), and sulfur (16–310 keV/nucleon) distributions cover a wide energy range. Spatially, the data set includes measurements from 6 to 142 Jovian radii (RJ) and covers all local times inside the Jovian magnetosphere. For each species a single detector head scans almost the entire sky (≈ 4π sr), producing the three-dimensional angular distributions from which the anisotropies are derived. Consequently, the resulting anisotropy estimates are both global and robust. Such anisotropies, generally produced by convective flow, ion intensity gradients, and field-aligned components, have long been used to estimate flow velocities and to locate spatial boundaries within magnetospheres. They can therefore provide vital information on magnetospheric circulation and dynamics. We find that the EPD measured anisotropies in the Jovian magnetosphere are dominated by a component in the corotational direction punctuated by episodic radial components, both inward and outward. Under the assumption that anisotropies are produced predominantly by convective flow, we derive flow velocities of protons, oxygen ions, and sulfur ions. The validity of that approach is supported by the fact that these three independently derived flow velocities agree, to a large extent, in this approximation. Thus, for the first time, we are able to derive the global flow pattern in a magnetosphere of an outer planet. In a comparison between the first-order EPD flow velocities and those predicted by a magnetohydrodynamic (MHD) simulation of the Jovian magnetosphere, we find that qualitatively the directions appear similar, although no firm evidence of steady outflow of ions has been observed at distances covered by Galileo. A first rough comparison indicates that the measured first-order flow velocities are higher by at least a factor of 1.5 than the MHD simulation results.

[1]  A. Lagg,et al.  Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere , 2001 .

[2]  S. E. Hawkins,et al.  Reply [to “Comment on ‘Bulk flows of hot plasma in the Jovian magnetosphere: A model of anisotropic fluxes of energetic ions’ by S. E. Hawkins III, A. F. Cheng, and L. J. Lanzerotti”] , 2000 .

[3]  M. Desai,et al.  Comment on “Bulk flows of hot plasma in the Jovian magnetosphere: A model of anisotropic fluxes of energetic ions” by S. E. Hawkins III, A. F. Cheng, and L. J. Lanzerotti , 2000 .

[4]  Barry H. Mauk,et al.  Storm‐like dynamics of Jupiter's inner and middle magnetosphere , 1999 .

[5]  N. Krupp,et al.  Plasma sheet dynamics in the Jovian magnetotail: Signatures For substorm‐like processes ? , 1999 .

[6]  M. Dougherty,et al.  Energetic particles in the duskside Jovian Magnetosphere , 1999 .

[7]  A. Alevizos,et al.  A method for spherical harmonic analysis of Compton – Getting corrected 3-d energetic particle distributions , 1999 .

[8]  B. Mauk,et al.  Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter's magnetodisk , 1999 .

[9]  S. E. Hawkins,et al.  Bulk flows of hot plasma in the Jovian magnetosphere: A model of anisotropic fluxes of energetic ions , 1998 .

[10]  Norbert Krupp,et al.  Quasi‐periodic modulations of the Jovian magnetotail , 1998 .

[11]  D. Williams,et al.  Energetic particle bursts in the predawn Jovian magnetotail , 1998 .

[12]  M. Kivelson,et al.  A global magnetohydrodynamic simulation of the Jovian magnetosphere , 1998 .

[13]  B. Mauk,et al.  Energy‐time dispersed charged particle signatures of dynamic injections in Jupiter's inner magnetosphere , 1997 .

[14]  S. E. Hawkins,et al.  Energetic electron beams in the duskside Jovian magnetosphere: Ulysses EPAC and HI-SCALE measurements , 1997 .

[15]  K. Kusano,et al.  MHD simulation of a rapidly rotating magnetosphere interacting with the external plasma flow , 1997 .

[16]  M. Dunlop,et al.  Origins of the first-order anisotropy of ∼ 1 MeV protons in the Jovian magnetosphere during the Ulysses flyby: flux gradients and plasma flows , 1997 .

[17]  S. E. Hawkins,et al.  Field-aligned particle streaming in the duskside high latitude Jovian magnetosphere , 1997 .

[18]  Helen C. Cowley,et al.  Papers on Magnetospheric Physics Plasma flow in the Jovian magnetosphere and related magnetic effects: Ulysses observations , 1996 .

[19]  A. Balogh,et al.  An overview of the anisotropy telescope observations of MeV ions during the Ulysses Jupiter encounter , 1996 .

[20]  S. Krimigis,et al.  Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low-energy charged particle measurements , 1995 .

[21]  S. E. Hawkins,et al.  Corotation of Jupiter's three-dimensional magnetosphere , 1995 .

[22]  M. Dougherty,et al.  Three-dimensional particle anisotropies in and near the plasma sheet of Jupiter observed by the EPAC experiment onboard the Ulysses spacecraft , 1993 .

[23]  D. Thomson,et al.  Measurements of hot plasmas in the magnetosphere of Jupiter , 1993 .

[24]  L J Lanzerotti,et al.  The Hot Plasma Environment at Jupiter: Ulysses Results , 1992, Science.

[25]  S. Krimigis,et al.  A convected kappa distribution model for hot ions in the Jovian magnetodisc , 1992 .

[26]  S. Jaskulek,et al.  The Galileo Energetic Particles Detector , 1992 .

[27]  Edmond C. Roelof,et al.  Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies , 1992 .

[28]  A. Balogh,et al.  The Ulysses Cosmic Ray and Solar Particle Investigation , 1992 .

[29]  J. Woch,et al.  The ULYSSES energetic particle composition experiment EPAC , 1992 .

[30]  R. McNutt,et al.  Plasma bulk flow in Jupiter's dayside middle magnetosphere , 1988 .

[31]  T. Hill,et al.  Superrotation in the pre‐dawn Jovian magnetosphere: Evidence for corotating convection , 1986 .

[32]  T. Sanderson,et al.  Observations of three‐dimensional anisotropies of 35‐ to 1000‐keV protons associated with interplanetary shocks , 1985 .

[33]  W. Ip,et al.  A dawn-to-dusk electric field in the Jovian magnetosphere , 1983 .

[34]  V. Vasyliūnas,et al.  Plasma distribution and flow , 1983 .

[35]  S. Krimigis,et al.  Physics of the Jovian Magnetosphere: Low-energy particle population , 1983 .

[36]  T. Northrop,et al.  Adiabatic charged particle motion in rapidly rotating magnetospheres , 1982 .

[37]  Louis J. Lanzerotti,et al.  Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .

[38]  W. I. Axford,et al.  Ion anisotropies in the outer Jovian magnetosphere , 1981 .

[39]  John W. Belcher,et al.  Positive ion observations in the middle magnetosphere of Jupiter , 1981 .

[40]  T. Hill Corotation Lag in Jupiter's Magnetosphere: Comparison of Observation and Theory , 1980, Science.

[41]  W. I. Axford,et al.  Hot Plasma Environment at Jupiter: Voyager 2 Results , 1979, Science.

[42]  R. McNutt,et al.  Departure from rigid co-rotation of plasma in Jupiter's dayside magnetosphere , 1979, Nature.

[43]  A. W. Schardt,et al.  Energetic protons in the Jovian magnetosphere. [0. 2 to 20 MeV] , 1979 .

[44]  A. W. Schardt,et al.  Anisotropies in the fluxes of Pioneer 10 protons. [in Jupiter magnetosphere , 1979 .

[45]  T. Northrop,et al.  Theory of flux anisotropies in a guiding center plasma. [magnetospheric environments] , 1978 .

[46]  T. Sanderson,et al.  Multiple telescope measurements of particle anisotropies in space , 1977 .

[47]  E. Roelof,et al.  Fluxes of =50‐keV protons and =30‐keV electrons at ∼35 RE , 1. Velocity anisotropies and plasma flow in the magnetotail , 1976 .

[48]  J. Simpson,et al.  Dynamics of the Jovian magnetosphere and energetic particle radiation , 1976 .

[49]  P. Sturrock,et al.  Centrifugal instability of the jovian magnetosphere and its interaction with the solar wind , 1974 .

[50]  E. Roelof,et al.  Energetic particles in the Jovian magnetosphere , 1974 .

[51]  T. Sanderson,et al.  Spherical harmonic analysis of satellite anisotropy measurements , 1974 .

[52]  Travis W. Hill,et al.  Configuration of the Jovian magnetosphere , 1974 .

[53]  T. Sanderson,et al.  Geometrical aspects of the performance of cosmic ray detector telescopes in non-isotropic particle distributions , 1972 .

[54]  G. Ioannidis,et al.  The magnetospheres of Jupiter and Earth , 1970 .