Information Content of Observations in Variational Data Assimilation

Data assimilation is needed to generate an analysis, which i s used as the initial conditions for numerical weather prediction. Four-dimensional variatio nal data assimilation (4D-Var) is the most advanced data assimilation algorithm to be used operat ionally; it uses observations that are distributed in time through the use of the model equation s. The aim of this thesis is to understand the extent to which 4DVar can develop the structures needed for the growth and decay of baroclinic systems. Such mid-latitude storms can cause severe damage and play a key role in the evolution of the atmospheric flow. The approach taken isolates the important mechanisms in 4D-Var by considering a simple model of baroclinic instability. Idealized case studies using the 2D Eady model consider the u se of a time-sequence of observations to reconstruct the state in unobserved region s. A novel technique using the singular value decomposition of the 4D-Var observability matr ix is developed, based on methods that are commonly used in satellite retrieval studies. It is used here to provide a new and useful understanding of the information content of observations i n 4D-Var. It is shown that the information that is propagated to the uno bserved regions is strongly penalized by the background state and is also extremely sens itiv to observational noise. This is understood by establishing a link with the literature on T ikhonov Regularization. An analysis increment will result in growth if the observations are give n at only the end of the window, or if a relatively large weight is given to the background state. T his may result in a poor forecast if the required analysis increments lead to decay. Two ways to m aximize the benefits of 4D-Var are identified: the initial and final observations should be f ar apart in time, and appropriate values for the regularization parameters should be specifie d.

[1]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[2]  William W. Hsieh,et al.  Adjoint data assimilation in coupled atmosphere‐ocean models: Determining model parameters in a simple equatorial model , 1997 .

[3]  S. Swarbrick Applying the relationship between potential vorticity fields and water vapour imagery to adjust initial conditions in NWP , 2001 .

[4]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[5]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[6]  R. Daley The Analysis of Synoptic Scale Divergence by a Statistical Interpolation Procedure , 1985 .

[7]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[8]  J. Weinman,et al.  The Use of Digital Warping of Microwave Integrated Water Vapor Imagery to Improve Forecasts of Marine Extratropical Cyclones , 1998 .

[9]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[10]  John Norbury,et al.  Rearrangements of functions with applications to meteorology and ideal fluid flow , 2002 .

[11]  Philippe Courtier,et al.  Dynamical structure functions in a four‐dimensional variational assimilation: A case study , 1996 .

[12]  Jean-Noël Thépaut,et al.  The information content of clear sky IASI radiances and their potential for numerical weather prediction , 1998 .

[13]  K. F. Riley,et al.  Mathematical Methods for Physics and Engineering , 1998 .

[14]  J. R. Eyre,et al.  The information content of data from satellite sounding systems: A simulation study , 1990 .

[15]  R. Vautard,et al.  Observational Error Structures and the Value of Advanced Assimilation Techniques , 2000 .

[16]  F. Bretherton Critical layer instability in baroclinic flows , 1966 .

[17]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[18]  H. Jean Thiebaux Experiments with Correlation Representations for Objective Analysis , 1975 .

[19]  Joab R. Winkler,et al.  Tikhonov regularisation in standard form for polynomial basis conversion , 1997 .

[20]  David F. Shanno,et al.  Remark on “Algorithm 500: Minimization of Unconstrained Multivariate Functions [E4]” , 1980, TOMS.

[21]  R. LeVeque Numerical methods for conservation laws , 1990 .

[22]  M. Forray,et al.  Variational Calculus in Science and Engineering , 1968 .

[23]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[24]  A. Piacentini,et al.  A new representation of data‐assimilation methods: The PALM flow‐charting approach , 2001 .

[25]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[26]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[27]  C. Wunsch,et al.  Determining the General Circulation of the Oceans: A Preliminary Discussion , 1977, Science.

[28]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[29]  Anna Ghelli Data assimilation for numerical weather prediction , 1992 .

[30]  C. Bishop,et al.  Eady Edge Waves and Rapid Development , 1994 .

[31]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[32]  A. Thorpe,et al.  The predictability of extratropical cyclones: Nonlinear sensitivity to localized potential‐vorticity perturbations , 2003 .

[33]  Jean-Noël Thépaut,et al.  Four‐dimensional variational analyses of FASTEX situations using special observations , 1999 .

[34]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[35]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[36]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[37]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[38]  Toby N. Carlson,et al.  Mid-Latitude Weather Systems , 1991 .

[39]  Kyōto Daigaku. Sūgakuka Lectures in mathematics , 1968 .

[40]  The Use of Adjoint Equations in Numerical Weather Prediction , 1997 .

[41]  P. Courtier,et al.  Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model , 1991 .

[42]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[43]  P. Courtier,et al.  Variational assimilation of conventional meteorological observations with a multilevel primitive-equation model , 1993 .

[44]  J. Pedlosky An initial value problem in the theory of baroclinic instability , 1964 .

[45]  Michael C. Morgan A Potential Vorticity and Wave Activity Diagnosis of Optimal Perturbation Evolution , 2001 .

[46]  David S. Richardson,et al.  Current status and future developments of the ECMWF Ensemble Prediction System , 2000 .

[47]  N. Higham Computing real square roots of a real matrix , 1987 .

[48]  Ionel M. Navon,et al.  Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology , 1987 .

[49]  R. Buizza The singular vector approach to the analysis of perturbation growth in the atmosphere , 1997 .

[50]  J. Charney,et al.  On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. , 1962 .

[51]  Ionel M. Navon,et al.  Optimality of variational data assimilation and its relationship with the Kalman filter and smoother , 2001 .

[52]  Jens Schröter,et al.  Variational Assimilation of Geosat Data into an Eddy-resolving Model of the Gulf Stream Extension Area , 1993 .

[53]  Robert N. Miller,et al.  Weighting Initial Conditions in Variational Assimilation Schemes , 1991 .

[54]  Paul R. Julian,et al.  On Some Properties of Correlation Functions Used in Optimum Interpolation Schemes , 1975 .

[55]  A. Hollingsworth,et al.  Objective Analysis for Numerical Weather Prediction , 1986 .

[56]  Brian F. Farrell,et al.  Optimal Excitation of Baroclinic Waves , 1989 .

[57]  Michael C. Morgan,et al.  Diagnosis of Optimal Perturbation Evolution in the Eady Model , 2002 .

[58]  Ian N. James,et al.  Introduction to Circulating Atmospheres , 1994 .

[59]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[60]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[61]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[62]  E B Carroll,et al.  A technique for consistent alteration of NWP output fields , 1997 .

[63]  P. D. Thompson,et al.  A Dynamical Method of Analyzing Meteorological Data , 1961 .

[64]  Martin Ehrendorfer,et al.  Optimal Prediction of Forecast Error Covariances through Singular Vectors , 1997 .

[65]  Olivier Talagrand,et al.  On extending the limits of variational assimilation in nonlinear chaotic systems , 1996 .

[66]  R. Rotunno,et al.  The Next-Order Corrections to Quasigeostrophic Theory , 1999 .

[67]  B. Farrell The initial growth of disturbances in a baroclinic flow , 1982 .

[68]  Philippe Courtier,et al.  Interactions of Dynamics and Observations in a Four-Dimensional Variational Assimilation , 1993 .

[69]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[70]  F. Bouttier,et al.  Observing‐system experiments in the ECMWF 4D‐Var data assimilation system , 2001 .

[71]  Yong Li,et al.  Four-Dimensional Variational Data Assimilation Experiments with a Multilevel Semi-Lagrangian Semi-Implicit General Circulation Model , 1994 .

[72]  David F. Shanno,et al.  Algorithm 500: Minimization of Unconstrained Multivariate Functions [E4] , 1976, TOMS.

[73]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[74]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[75]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[76]  Werner Wergen,et al.  The effect of model errors in variational assimilation , 1992 .

[77]  Philippe Courtier,et al.  Four‐Dimensional Assimilation In the Presence of Baroclinic Instability , 1992 .

[78]  P. Bergthórsson,et al.  Numerical Weather Map Analysis , 1955 .

[79]  Gérald Desroziers,et al.  Diagnosis and adaptive tuning of observation‐error parameters in a variational assimilation , 2001 .

[80]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[81]  Vincent Toumazou,et al.  Using a Lanczos Eigensolver in the Computation of Empirical Orthogonal Functions , 2001 .

[82]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[83]  N. Nichols,et al.  Data Assimilation Using Optimal Control Theory , 1994 .

[84]  Brian F. Farrell,et al.  Modal and Non-Modal Baroclinic Waves , 1984 .

[85]  Chris Snyder,et al.  Statistical Design for Adaptive Weather Observations , 1999 .

[86]  J. Barkmeijer,et al.  Singular vectors and estimates of the analysis‐error covariance metric , 1998 .

[87]  Monique Tanguay,et al.  Four‐dimensional data assimilation with a wide range of scales , 1995 .

[88]  W. Hsieh,et al.  Adjoint Data Assimilation in Coupled Atmosphere-Ocean Models : Determining Initial Conditions in a S , 1998 .

[89]  Philip E. Gill,et al.  Practical optimization , 1981 .

[90]  R. Hoffman,et al.  A Technique for Assimilating SSM/I Observations of Marine Atmospheric Storms: Tests with ECMWF Analyses , 1996 .

[91]  E. Tziperman,et al.  Finite Difference of Adjoint or Adjoint of Finite Difference , 1997 .

[92]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[93]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[94]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[95]  P. Courtier,et al.  Extended assimilation and forecast experiments with a four‐dimensional variational assimilation system , 1998 .

[96]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[97]  Ionel M. Navon,et al.  Incomplete observations and control of gravity waves in variational data assimilation , 1992 .

[98]  Chris Snyder,et al.  Summary of an Informal Workshop on Adaptive Observations and FASTEX , 1996 .

[99]  R. Giering,et al.  Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity , 1999 .

[100]  W. Chao,et al.  Development of a four-dimensional variational analysis system using the adjoint method at GLA. I : dynamics , 1992 .

[101]  E. Lorenz,et al.  The essence of chaos , 1993 .

[102]  K. Brewster,et al.  Phase-Correcting Data Assimilation and Application to Storm-Scale Numerical Weather Prediction. Part I: Method Description and Simulation Testing , 2003 .

[103]  R. Daley Atmospheric Data Analysis , 1991 .

[104]  R. Errico What is an adjoint model , 1997 .

[105]  Philippe Courtier,et al.  Sensitivity of forecast errors to initial conditions , 1996 .

[106]  B. Gilchrist,et al.  An Experiment in Objective Analysis , 1954 .

[107]  J. Derber,et al.  Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model , 1992 .

[108]  J. Holton An introduction to dynamic meteorology , 2004 .

[109]  T. Haine,et al.  Adjoints of nonoscillatory advection schemes , 2001 .

[110]  B. Hoskins,et al.  Simple Initial Value Problems and Mechanisms for Baroclinic Growth , 2001 .

[111]  A. Hollingsworth,et al.  Global Observing System Experiments on Operational Statistical Retrievals of Satellite Sounding Data , 1991 .

[112]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[113]  Yann Brenier,et al.  The Monge–Kantorovitch mass transfer and its computational fluid mechanics formulation , 2002 .

[114]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[115]  J. Louis,et al.  Distortion Representation of Forecast Errors , 1995 .

[116]  B. Noble Applied Linear Algebra , 1969 .

[117]  Gene H. Golub,et al.  Matrix computations , 1983 .

[118]  B. Hoskins A potential vorticity view of synoptic development , 1997 .

[119]  M. Fisher Estimation of Entropy Reduction and Degrees of Freedom for Signal for Large Variational Analysis Systems , 2003 .

[120]  G. Stewart,et al.  Rank degeneracy and least squares problems , 1976 .

[121]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[122]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[123]  Carlton L. Mateer,et al.  On the Information Content of Umkehr Observations. , 1965 .

[124]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[125]  B. Macpherson,et al.  A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model , 1997 .

[126]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .