NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

[1]  Eugene N. Parker,et al.  Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .

[2]  A. Pevtsov,et al.  Magnetic twist and writhe of active regions On the origin of deformed flux tubes , 2014, 1411.5626.

[3]  Yang Liu,et al.  INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS , 2013, The Astrophysical Journal.

[4]  Manolis K. Georgoulis,et al.  THE MAGNETIC ENERGY–HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS , 2012, 1209.5612.

[5]  P. Caselli,et al.  FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE , 2012, 1208.5998.

[6]  J. Borrero,et al.  Magnetic Structure of Sunspots , 2011, Living reviews in solar physics.

[7]  P. Venkatakrishnan,et al.  EVOLUTION OF CURRENTS OF OPPOSITE SIGNS IN THE FLARE-PRODUCTIVE SOLAR ACTIVE REGION NOAA 10930 , 2011, 1108.5818.

[8]  M. Georgoulis Comment on “Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions” , 2011, 1106.4682.

[9]  S. Gosain,et al.  MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES , 2010, 1007.4876.

[10]  Brian T. Welsch,et al.  Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Atmosphere and the Solar Interior , 2010, 1006.5247.

[11]  A. M. Title,et al.  SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION , 2010, 1006.4117.

[12]  B. van der Holst,et al.  SIMULATION OF FLUX EMERGENCE FROM THE CONVECTION ZONE TO THE CORONA , 2010, 1003.6118.

[13]  A. Hood,et al.  Flux emergence and coronal eruption , 2010, 1003.2333.

[14]  Manolis K. Georgoulis,et al.  SOLAR MAGNETIC HELICITY INJECTED INTO THE HELIOSPHERE: MAGNITUDE, BALANCE, AND PERIODICITIES OVER SOLAR CYCLE 23 , 2009 .

[15]  F. Moreno-insertis,et al.  Magnetic flux emergence into the solar photosphere and chromosphere , 2009 .

[16]  P. Venkatakrishnan,et al.  ON THE ABSENCE OF PHOTOSPHERIC NET CURRENTS IN VECTOR MAGNETOGRAMS OF SUNSPOTS OBTAINED FROM HINODE (SOLAR OPTICAL TELESCOPE/SPECTRO-POLARIMETER) , 2009, 0910.3751.

[17]  Thomas R. Metcalf,et al.  Resolving the 180° Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions , 2009 .

[18]  Haimin Wang,et al.  Study of Magnetic Channel Structure in Active Region 10930 , 2008 .

[19]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .

[20]  A. Hood,et al.  A Flux Emergence Model for Solar Eruptions , 2008, 0801.1649.

[21]  D. Rust,et al.  Survey of Magnetic Helicity Injection in Regions Producing X-Class Flares , 2007 .

[22]  K. Shibasaki,et al.  Evolution of the sheared magnetic fields of two X class flares observed by Hinode XRT , 2007 .

[23]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[24]  W. Manchester Solar atmospheric dynamic coupling due to shear motions driven by the Lorentz force , 2007 .

[25]  N. Raouafi,et al.  MAGNETIC ENERGY AND HELICITY BUDGETS IN THE ACTIVE-REGION SOLAR CORONA. II. NONLINEAR FORCE-FREE APPROXIMATION , 2007, 0706.4122.

[26]  R. Casini,et al.  Solar Polarization 4 , 2006 .

[27]  M. J. Murray,et al.  3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube , 2006 .

[28]  G. A. Gary,et al.  An Overview of Existing Algorithms for Resolving the 180° Ambiguity in Vector Magnetic Fields: Quantitative Tests with Synthetic Data , 2006 .

[29]  L. Golub,et al.  Analysis of Magnetic Shear in An X17 Solar Flare on October 28, 2003 , 2006 .

[30]  H. Balthasar Vertical current densities and magnetic gradients in sunspots , 2006 .

[31]  H. Socas-Navarro The Three-dimensional Structure of a Sunspot Magnetic Field , 2005, astro-ph/0508688.

[32]  G. Barnes,et al.  Implementing a Magnetic Charge Topology Model for Solar Active Regions , 2005 .

[33]  Manolis K. Georgoulis,et al.  A New Technique for a Routine Azimuth Disambiguation of Solar Vector Magnetograms , 2005 .

[34]  Haimin Wang,et al.  Photospheric Shear Flows along the Magnetic Neutral Line of Active Region 10486 prior to an X10 Flare , 2004 .

[35]  M. Georgoulis,et al.  Vertical Lorentz Force and Cross-Field Currents in the Photospheric Magnetic Fields of Solar Active Regions , 2004 .

[36]  A. Nindos,et al.  The Association of Big Flares and Coronal Mass Ejections: What Is the Role of Magnetic Helicity? , 2004, Proceedings of the International Astronomical Union.

[37]  E. Parker Tangential discontinuities in untidy magnetic topologies , 2004 .

[38]  M. Georgoulis,et al.  On the Resolution of the Azimuthal Ambiguity in Vector Magnetograms of Solar Active Regions , 2004 .

[39]  T. Gombosi,et al.  Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .

[40]  T. Török,et al.  The evolution of twisting coronal magnetic flux tubes , 2003 .

[41]  P. N. Bernasconi,et al.  Moving Dipolar Features in an Emerging Flux Region , 2002 .

[42]  D. Falconer A prospective method for predicting coronal mass ejections from vector magnetograms , 2001 .

[43]  Hongqi Zhang Electric Current and Magnetic Shear in Solar Active Regions , 2001 .

[44]  W. Manchester The Role of Nonlinear Alfvén Waves in Shear Formation during Solar Magnetic Flux Emergence , 2001 .

[45]  B. Welsch,et al.  A Model for the Emergence of a Twisted Magnetic Flux Tube , 2000 .

[46]  M. Wheatland Are Electric Currents in Solar Active Regions Neutralized? , 2000 .

[47]  B. Low,et al.  Magnetostatic atmospheres possessing identical invariants of ideal magnetohydrodynamics , 2000 .

[48]  Z. Mikić,et al.  PROBLEMS AND PROGRESS IN COMPUTING THREE-DIMENSIONAL CORONAL ACTIVE REGION MAGNETIC FIELDS FROM BOUNDARY DATA , 1997 .

[49]  G. A. Gary,et al.  Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions , 1997 .

[50]  V. Pillet,et al.  Active Region Magnetic Fields. I. Plage Fields , 1997 .

[51]  E. Parker Comment on “Current Paths in the Corona and Energy Release in Solar Flares” , 1996 .

[52]  E. Parker Inferring Mean Electric Currents in Unresolved Fibril Magnetic Fields , 1996 .

[53]  L. Golub,et al.  Differential Magnetic Field Shear in an Active Region , 1996 .

[54]  D. Melrose Current Paths in the Corona and Energy Release in Solar Flares , 1995 .

[55]  H. Zirin,et al.  Vector magnetic field changes associated with X-class flares , 1994 .

[56]  D. Elmore,et al.  Stokes profile analysis and vector magnetic fields. VI: Fine scale structure of a sunspot , 1993 .

[57]  H. Zirin,et al.  Narrow lanes of transverse magnetic field in sunspots , 1993, Nature.

[58]  G. A. Gary,et al.  On neutralized currents in the solar corona , 1992 .

[59]  D. Melrose Neutralized and unneutralized current patterns in the solar corona , 1991 .

[60]  George W. Collins,et al.  Astrophysics of the Sun: Harold Zirin. Cambridge University Press, 1988, 433p. (ISBN 0-521-316073) , 1989 .

[61]  Harold Zirin,et al.  The Astrophysics of the Sun , 1988 .

[62]  V. Pizzo Numerical solution of the magnetostatic equations for thick flux tubes, with application to sunspots, pores, and related structures , 1986 .

[63]  T. Sakurai Green's function methods for potential magnetic fields , 1982 .

[64]  J. Stenflo Magnetic-field structure of the photospheric network , 1973 .

[65]  E. Parker Topological dissipation and the small-scale fields in turbulent gases. , 1972 .

[66]  J. Stenflo,et al.  On the filamentary nature of solar magnetic fields , 1972 .

[67]  Penny J Johnes,et al.  AGU Fall Meeting Abstracts , 2013 .

[68]  R. Howe Subsurface and atmospheric influences on solar activity : proceedings of a workshop held at National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA 16-20 April 2007 , 2008 .

[69]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[70]  L. Driel-Gesztelyi,et al.  Evidence for Current-carrying Emerging Flux , 1996 .

[71]  R. Canfield,et al.  Is the solar chromospheric magnetic field force-free? , 1995 .

[72]  M. Hagyard,et al.  Explorations of electric current system in solar active regions , 1987 .

[73]  W. Livingston,et al.  Observational evidence for quantization in photospheric magnetic flux , 1969 .

[74]  A. Bruzek On arch-filament systems in spotgroups , 1967 .