Fuel cells development and hydrogen production from renewable resources in Brazil

Abstract In this work we review the Brazilian energy supply matrix, in particular focusing on environmentally friendly pathways to hydrogen production and fuel cell utilisation. Brazil is currently building capacity in these areas, evident in the spectrum of technological research carried out by several universities in the fields of hydrogen production processes, catalysts and electrolyte materials. Although the fuel cell installed capacity in Brazil is limited, there are several government-funded research activities – mainly on PEM, DMFC, DEFC and SOFC, in addition to reforming and catalysis of ethanol as cell fuel. Brazil has a robust energy matrix, and 45% of its energy supply is derived from renewable resources. The future hydrogen economy in Brazil will probably rely on renewable resources, mainly from hydroelectric power and biofuels, which are plentifully available.

[1]  Francisco M. S. Garrido,et al.  PILHAS A COMBUSTÍVEL DE ÓXIDO SÓLIDO: MATERIAIS, COMPONENTES E CONFIGURAÇÕES , 2007 .

[2]  Emerson Silva Ribeiro Junior,et al.  ADERÊNCIA DOS PROJETOS APOIADOS PELO CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPq, BOLSAS DE PRODUTIVIDADE EM PESQUISA E O PROJETO PLATAFORMA TECNOLÓGICA DO LEITE , 2007 .

[3]  Avinash Kumar Agarwal,et al.  Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines , 2007 .

[4]  A. S. Gomes,et al.  Copolymerization of Styrene onto Polyethersulfone Films Induced By Gamma Ray Irradiation , 2006 .

[5]  M. Buzzo,et al.  Preparation and characterization of matrices for phosphoric acid fuel cells , 1997 .

[6]  M. Brant,et al.  Electrical degradation of porous and dense LSM/YSZ interface , 2006 .

[7]  E. Longo,et al.  Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9−δ powder , 2007 .

[8]  W. K. Yoshito,et al.  Synthesis and Characterization of NiO-8YSZ Powders by Coprecipitation Route , 2005 .

[9]  Fabio B. Noronha,et al.  Steam reforming of ethanol on supported nickel catalysts , 2007 .

[10]  J. M. Rosolen,et al.  Carbon fibers with cup-stacked-type structure: An advantageous support for Pt–Ru catalyst in methanol oxidation , 2006 .

[11]  H. Fajardo,et al.  Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts , 2006 .

[12]  Thereza Christina Vessoni Penna,et al.  Perspectives on bioenergy and biotechnology in Brazil , 2005, Applied biochemistry and biotechnology.

[13]  A. O. Neto,et al.  Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process , 2007 .

[14]  Gabriella P.A.G. Pousa,et al.  History and policy of biodiesel in Brazil , 2007 .

[15]  T. Vezirolu,et al.  Long-term environmental and socio-economic impact of a hydrogen energy program in Brazil , 2001 .

[16]  Chunshan Song,et al.  Fuel processing for low-temperature and high-temperature fuel cells , 2002 .

[17]  M. Schmal,et al.  Selective CO oxidation in the presence of H2 over Pt and Pt-Sn catalysts supported on niobia , 2006 .

[18]  D. M. Anjos,et al.  Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell , 2007 .

[19]  E. Gonzalez,et al.  Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: Effect of thermal treatment , 2007 .

[20]  K. Hassmann,et al.  Primary energy sources for hydrogen production , 1993 .

[21]  A. O. Neto,et al.  Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development , 2005 .

[22]  Benjamin C. McLellan,et al.  Fuel cells, hydrogen and energy supply in Australia , 2004 .

[23]  Theophilos Ioannides,et al.  Thermodynamic analysis of ethanol processors for fuel cell applications , 2001 .

[24]  Valtencir Zucolotto,et al.  Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix , 2006 .

[25]  J. Perez,et al.  Influence of Particle Size on the Properties of Pt – Ru ∕ C Catalysts Prepared by a Microemulsion Method , 2007 .

[26]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[27]  M. Wetzstein,et al.  Can the U.S. Ethanol Industry Compete in the Alternative Fuels' Market? , 2007 .

[28]  F. Colmati,et al.  Ethanol Oxidation on Carbon Supported Pt-Sn Electrocatalysts Prepared by Reduction with Formic Acid , 2007 .

[29]  Ermete Antolini,et al.  The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt–Co catalyst , 2006 .

[30]  Jaime Soares Boaventura,et al.  Eficincia terica de pilhas a combustvel do tipo PaCOS , 2007 .

[31]  Frank A. Coutelieris,et al.  Electricity from ethanol fed SOFCs: the expectations for sustainable development and technological benefits , 2004 .

[32]  H. Fajardo,et al.  Preparation and evaluation of porous nickel-alumina spheres as catalyst in the production of hydrogen from decomposition of methane , 2006 .

[33]  Egberto Gomes Franco,et al.  Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by Bonnemann's method , 2003 .

[34]  Luiz Pinguelli Rosa Present Crisis and the Future of Alcohol Programs in Brazil1 , 1993 .

[35]  S. M. Lala,et al.  Carbon nanotube/felt composite electrodes without polymer binders , 2006 .

[36]  M. Melaina Initiating hydrogen infrastructures: preliminary analysis of a sufficient number of initial hydrogen stations in the US , 2003 .

[37]  José Luz Silveira,et al.  Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water , 2001 .

[38]  F. B. Noronha,et al.  Partial oxidation of ethanol on supported Pt catalysts , 2005 .

[39]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[40]  L. F. Brown A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles , 2001 .

[41]  Marcelo Godoy Simões,et al.  A Bayesian network fault diagnostic system for proton exchange membrane fuel cells , 2007 .

[42]  Paulo Emílio V. de Miranda,et al.  Fabricação de suspensões cerâmicas para anodos de PaCOS suportadas pelo eletrólito , 2007 .

[43]  R. F. Souza,et al.  Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis , 2006 .

[44]  E. Assaf,et al.  Double bed reactor for the simultaneous steam reforming of ethanol and water gas shift reactions , 2006 .

[45]  Martha Macedo de Lima Barata,et al.  Analysis of the sustainability of using wastes in the Brazilian power industry , 2008 .

[46]  Edson A. Ticianelli,et al.  Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol , 2003 .

[47]  E. Ticianelli,et al.  Influence of the supporting electrolyte on the oxygen reduction reaction at the platinum/proton exchange membrane interface , 1994 .

[48]  M. Brant,et al.  Electrical and microstructural aging of porous lanthanum strontium manganite/yttria-doped cubic zirconia electrodes , 2001 .

[49]  A. O. Neto,et al.  Electro-oxidation of ethanol on PtRu/C electrocatalysts prepared from (η-C2H4)(Cl)Pt(μCl)2Ru(Cl)(η3,η3-C10H16) , 2003 .

[50]  E. Ticianelli,et al.  Development of small polymer electrolyte fuel cell stacks , 1998 .

[51]  A. O. Neto,et al.  Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts , 2005 .

[52]  Edson Bazzo,et al.  A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems , 2005 .

[53]  M. Pereira-da-Silva,et al.  Layer-by-layer films of chitosan, poly(vinyl sulfonic acid), and platinum for methanol electrooxidation and oxygen electroreduction , 2006 .

[54]  M. Schmal,et al.  Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts , 2003 .

[55]  Alexandre Filgueiras,et al.  Wind energy in Brazil--present and future , 2003 .

[56]  A. Banerjee,et al.  A global survey of hydrogen energy research, development and policy , 2006 .

[57]  F. C. Fonseca,et al.  Direcionamentos da tecnologia industrial de células a combustível de óxidos sólidos , 2007 .

[58]  Andrew Dicks,et al.  Hydrogen from coal: Production and utilisation technologies , 2006 .

[59]  Hartmut Wendt,et al.  Tecnologia de células a combustível , 2000 .

[60]  Waichi Iwasaki,et al.  A consideration of the economic efficiency of hydrogen production from biomass , 2003 .

[61]  A. Dicks,et al.  Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application , 2007 .

[62]  Edson A. Ticianelli,et al.  Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells , 1996 .

[63]  Aie World Energy Outlook 2000 , 2000 .

[64]  Luiz Pinguelli Rosa,et al.  Brazilian waste potential: energy, environmental, social and economic benefits , 2003 .

[65]  Edson A. Ticianelli,et al.  Effect of water transport in a PEFC at low temperatures operating with dry hydrogen , 1999 .

[66]  F. B. Noronha,et al.  The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol , 2005 .

[67]  L. Bulhões,et al.  Sol−Gel Prepared Pt-Modified Oxide Layers: Synthesis, Characterization, and Electrocatalytic Activity , 2006 .

[68]  Benjamin C. McLellan,et al.  Hydrogen production and utilisation opportunities for Australia , 2005 .

[69]  José Luz Silveira,et al.  Study of fuel cell co-generation systems applied to a dairy industry , 2002 .

[70]  E. Santiago,et al.  Carbon-Supported Pt−Co Catalysts Prepared by a Modified Polyol Process as Cathodes for PEM Fuel Cells , 2007 .

[71]  L. Bulhões,et al.  Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method , 2006 .

[72]  M. Schmal,et al.  Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications , 2007 .

[73]  Lucilio Rogerio Aparecido Alves,et al.  Custos de produção de biodiesel no Brasil. , 2006 .

[74]  D. Souza,et al.  Electrical and microstructural characterization of La0.7Sr0.3MnO3 (LSM), Ce0.8Y0.2O2 (CY) and LSM–CY composites , 2007 .

[75]  E. Gonzalez,et al.  Carbon supported Pt–Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells , 2007 .

[76]  A. Pires,et al.  Mixed conductive blends of SPEEK/PANI , 2005 .

[77]  E. Muccillo,et al.  Synthesis, sintering and impedance spectroscopy of 8 mol% yttria-doped ceria solid electrolyte , 2004 .

[78]  C. Lamy,et al.  Application of Pt + RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC , 2006 .

[79]  J. A. Puppim de Oliveira,et al.  The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme , 2002 .

[80]  M. Silva,et al.  Desenvolvimento de protótipo de células a combustível do tipo óxido sólido com reforma direta , 2007 .

[81]  E. P. da Silva,et al.  Comparative study between the hysolar project and a hypothetical international project in Brazil for hydrogen production and exportation (BHP) from photovoltaic energy and secondary hydroelectricity combined supply , 1998 .

[82]  Jairton Dupont,et al.  Room temperature dialkylimidazolium ionic liquid-based fuel cells , 2003 .

[83]  João Carlos Camargo,et al.  Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil , 2005 .

[84]  Alexandre Szklo,et al.  Policies for advancing energy efficiency and renewable energy use in Brazil , 2004 .

[85]  E. Assaf,et al.  High efficiency steam reforming of ethanol by cobalt-based catalysts , 2004 .

[86]  S. Castanho,et al.  Influence of the starting materials on performance of high temperature oxide fuel cells devices , 2004 .

[87]  E. Ticianelli,et al.  Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction , 2007 .

[88]  Luís Gustavo dos Santos,et al.  Eletrocatálise das reações de oxidação de hidrogênio e de redução de oxigênio , 2005 .

[89]  C. Yamagata,et al.  Synthesis of ZrO2-Based Ceramics for Applications in SOFC , 2003 .

[90]  Panagiotis Tsiakaras,et al.  Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol , 2001 .

[91]  Brasil. Congresso Nacional. Câmara dos Deputados. Comissão Trabalho,et al.  Relatório anual 2004 , 2004 .

[92]  Frank A. Coutelieris,et al.  Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane , 2004 .

[93]  Ibrahim Dincer,et al.  Exergetic life cycle assessment of hydrogen production from renewables , 2007 .

[94]  María Isabel Sosa,et al.  Physical-Chemical and Thermodynamic Analyses of Ethanol Steam Reforming for Hydrogen Production , 2006 .

[95]  F. C. Fonseca,et al.  Impedance spectroscopy of (yttria-stabilized zirconia)-magnesia ceramic composites , 2000 .

[96]  D. M. Anjos,et al.  Electroactivity of tin modified platinum electrodes for ethanol electrooxidation , 2007 .

[97]  E. Ticianelli,et al.  Status of a research program on phosphoric acid fuel cells in Brazil , 1988 .

[98]  Charles Weiss Ethyl alcohol as a motor fuel in Brazil , 1990 .

[99]  E. Ticianelli,et al.  Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum–cobalt electrodes in alkaline media , 2004 .

[100]  M. Silva,et al.  Preparação e avaliação de célula a combustível do tipo PaCOS unitária com ânodo a base de níquel e cobalto , 2007 .

[101]  D. Z. Florio,et al.  Development and testing of anode-supported solid oxide fuel cells with slurry-coated electrolyte and cathode , 2006 .

[102]  R. Castro,et al.  Densification and electrical conductivity of fast fired manganese-doped ceria ceramics , 2005 .