Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions

Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of Joule heating on the phase transition was found to be strongly influenced by the device geometry, the contact material, and the current. Our results indicate that the VO2 phase transition was likely initiated electronically, which was sometimes followed by a secondary thermally induced transition.

[1]  Harry A Atwater,et al.  Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. , 2010, Optics express.

[2]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[3]  B. Kahng,et al.  Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films , 2013 .

[4]  Matthew D. Pickett,et al.  Local Temperature Redistribution and Structural Transition During Joule‐Heating‐Driven Conductance Switching in VO2 , 2013, Advanced materials.

[5]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .

[6]  Zhi Liu,et al.  Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal , 2013 .

[7]  Joyeeta Nag,et al.  Photothermal optical modulation of ultra-compact hybrid Si-VO₂ ring resonators. , 2012, Optics express.

[8]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[9]  Ivan K Schuller,et al.  Role of thermal heating on the voltage induced insulator-metal transition in VO2. , 2013, Physical review letters.

[10]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[11]  Shriram Ramanathan,et al.  Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry , 2008 .

[12]  Martin Dressel,et al.  Electrodynamics of correlated electron materials , 2011, 1106.2309.

[13]  Kevin Wang,et al.  Decoupling of structural and electronic phase transitions in VO2. , 2012, Physical review letters.

[14]  Gokul Gopalakrishnan,et al.  On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects , 2009, Journal of Materials Science.

[15]  Xiaonan Chen,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[16]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[17]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[18]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[19]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[20]  Shriram Ramanathan,et al.  Correlated Electron Materials and Field Effect Transistors for Logic: A Review , 2012, 1212.2684.

[21]  Ivan K. Schuller,et al.  Ultra-thin filaments revealed by the dielectric response across the metal-insulator transition in VO2 , 2013 .

[22]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[23]  Giwan Seo,et al.  Voltage-Pulse-Induced Switching Dynamics in $ \hbox{VO}_{2}$ Thin-Film Devices on Silicon , 2011, IEEE Electron Device Letters.

[24]  C. Detavernier,et al.  VO2, a Metal-Insulator Transition Material for Nanoelectronic Applications , 2012 .

[25]  Hubert Jerominek,et al.  Vanadium oxide films for optical switching and detection , 1993 .

[26]  Shriram Ramanathan,et al.  Work function of vanadium dioxide thin films across the metal-insulator transition and the role of surface nonstoichiometry. , 2011, ACS applied materials & interfaces.

[27]  C. N. Berglund Thermal filaments in vanadium dioxide , 1969 .

[28]  D. N. Basov,et al.  Reconfigurable Gradient Index using VO$_2$ Memory Metamaterials , 2011, 1103.5729.

[29]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[30]  Joyce K. S. Poon,et al.  Sub-volt broadband hybrid plasmonic-vanadium dioxide switches , 2012, 1210.0785.

[31]  Alexander Pergament,et al.  Switching effect and the metal–insulator transition in electric field , 2010 .

[32]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[33]  J. Poon,et al.  Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches. , 2012, Optics express.

[34]  Massimiliano Di Ventra,et al.  Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches , 2011, 1109.1834.

[35]  Shriram Ramanathan,et al.  Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices , 2013 .

[36]  A. Crunteanu,et al.  High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes , 2012 .

[37]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[38]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[39]  Yan Zhang,et al.  Analysis of “on” and “off” times for thermally driven VO2 metal-insulator transition nanoscale switching devices , 2011 .