A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families.

The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.

[1]  M. Wedin,et al.  The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae , 2003, Cladistics : the international journal of the Willi Hennig Society.

[2]  J. Bennett The Lichens and Allied Fungi of Great Smoky Mountains National Park , 2013 .

[3]  F. Dietrich,et al.  High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family , 2013, BMC Genomics.

[4]  U. Søchting,et al.  A new taxonomy of the family Teloschistaceae , 2013 .

[5]  V. Calatayud,et al.  Buellia tesserata and dimelaena radiata, two closely related species , 2003, The Lichenologist.

[6]  H. Lumbsch,et al.  Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. , 2004, Molecular phylogenetics and evolution.

[7]  E. Timdal,et al.  Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): Extreme polyphyly and morphological/ecological convergence , 2013 .

[8]  H. Lumbsch,et al.  Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). , 2011, Molecular phylogenetics and evolution.

[9]  O. W. Purvis,et al.  Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis. , 2006, Mycological research.

[10]  C. Schoch,et al.  Dolabra nepheliae on rambutan and lychee represents a novel lineage of phytopathogenic Eurotiomycetes , 2010, Mycoscience.

[11]  R. Lücking,et al.  Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella , 2013, The Lichenologist.

[12]  C. Printzen Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships , 2010 .

[13]  L. Casano,et al.  Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. , 2011, Annals of botany.

[14]  P. Convey,et al.  Life history strategy of Lepraria borealis at an Antarctic inland site, Coal Nunatak , 2010, The Lichenologist.

[15]  J. Wiens,et al.  Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. , 2011, Systematic biology.

[16]  Ulf Arup,et al.  Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). , 2012, Molecular phylogenetics and evolution.

[17]  H. Lumbsch,et al.  Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. , 2012, American journal of botany.

[18]  W. L. Culberson,et al.  Secondary Metabolites as a Tool in Ascomycete Systematics: Lichenized Fungi , 1994 .

[19]  M. Grube,et al.  Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota) , 2011 .

[20]  T. Friedl,et al.  Photobionts in Lichens: Possible Indicators of Phylogenetic Relationships? , 1998 .

[21]  J. Hafellner Towards a better circumscription of the Acarosporaceae (Lichenized Ascomycotina, Lecanorales). , 1995 .

[22]  P. Škaloud,et al.  Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. , 2010, Ecotoxicology and environmental safety.

[23]  H. Lumbsch,et al.  Gregorella, a new genus to accommodate Moelleropsis humida and a molecular phylogeny of Arctomiaceae , 2005, The Lichenologist.

[24]  Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales) , 2012, Fungal Diversity.

[25]  R. Lücking,et al.  Phylogenetic Classification at Generic Level in the Absence of Distinct Phylogenetic Patterns of Phenotypical Variation: A Case Study in Graphidaceae (Ascomycota) , 2012, PloS one.

[26]  M. Grube,et al.  The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. , 2004, Mycological research.

[27]  F. Lutzoni,et al.  Phylogenetic study of Diploschistes (lichen-forming Ascomycota: Ostropales: Graphidaceae), based on morphological, chemical, and molecular data , 2013 .

[28]  A. Pyron,et al.  A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. , 2011, Molecular phylogenetics and evolution.

[29]  M. Wedin,et al.  The relationships of Odontotrema (Odontotremataceae) and the resurrected Sphaeropezia (Stictidaceae)—new combinations and three new Sphaeropezia species , 2013, Mycologia.

[30]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[31]  H. Lumbsch,et al.  Myconet Volume 14. Part One. Outline of Ascomycota—2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113 , 2010 .

[32]  H. Lumbsch,et al.  Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. , 2007, Molecular phylogenetics and evolution.

[33]  R. Lücking,et al.  Molecular phylogeny and systematics of the Ocellularia clade (Ascomycota: Ostropales: Graphidaceae) , 2012 .

[34]  M. Nelsen,et al.  A molecular phylogeny of Graphidaceae (Ascomycota, Lecanoromycetes, Ostropales) including 428 species , 2013 .

[35]  H. Lumbsch,et al.  Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. , 2004, Molecular phylogenetics and evolution.

[36]  H. Lumbsch,et al.  A new circumscription of the genus Ramboldia (Lecanoraceae, Ascomycota) based on morphological and molecular evidence , 2008 .

[37]  V. Tkach,et al.  MOLECULAR PHYLOGENY OF THE GENUS , 2011 .

[38]  L. Myllys,et al.  Gowardia (Parmeliaceae)—a new alectorioid lichen genus with two species , 2009 .

[39]  F. Kauff,et al.  Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. , 2002, Molecular phylogenetics and evolution.

[40]  R. Lücking,et al.  Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes) , 2010 .

[41]  Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands , 2012, Symbiosis.

[42]  Dr. Siegfried Huneck,et al.  Identification of Lichen Substances , 1996, Springer Berlin Heidelberg.

[43]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[44]  E. Sérusiaux,et al.  Lecania falcata, a new species from Spain, the Canary Islands and the Azores, close to Lecania chlorotiza , 2012, The Lichenologist.

[45]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[46]  F. Kauff,et al.  Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota) , 2011, Mycologia.

[47]  I. Martínez,et al.  Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota) , 2010, Mycologia.

[48]  M. Wedin,et al.  A revised generic classification of the jelly lichens, Collemataceae , 2013, Fungal Diversity.

[49]  J. Fankhauser,et al.  Gyalectoid Pertusaria species form a sister-clade to Coccotrema (Ostropomycetidae, Ascomycota) and comprise the new lichen genus Gyalectaria , 2010 .

[50]  G. Aragón,et al.  Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). , 2010, Molecular phylogenetics and evolution.

[51]  J. Vondrák Biomonitoring, ecology, and systematics of lichens , 2012 .

[52]  G. Mueller,et al.  Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). , 2004, Molecular phylogenetics and evolution.

[53]  D. Hawksworth,et al.  Phylogenetic generic classification of parmelioid lichens (Parmeliaceae,Ascomycota) based on molecular, morphological and chemical evidence. , 2010 .

[54]  B. Coppins,et al.  A Taxonomic Study of the Lichen Genus Micarea in Europe , 1985 .

[55]  F. Lutzoni,et al.  A generic redelimitation of the Ionaspis-Hymenelia complex (lichenized Ascomycotina) , 1995 .

[56]  H. Lumbsch,et al.  Outline of Ascomycota - 2007 , 2007 .

[57]  J. Elix,et al.  Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers , 2009, The Lichenologist.

[58]  R. Lücking,et al.  Phylogenetic relationships of Gomphillaceae and Asterothyriaceae: evidence from a combined Bayesian analysis of nuclear and mitochondrial sequences , 2004, Mycologia.

[59]  E. Sérusiaux,et al.  A further new species in the lichen genus Arctomia: A. borbonica from Reunion (Mascarene archipelago) , 2012 .

[60]  M. Chase,et al.  THE MAJOR CLADES , 2003 .

[61]  J. Elix,et al.  Lichen Biology: Biochemistry and secondary metabolites , 2008 .

[62]  S. Stenroos,et al.  A phylogenetic analysis of xanthorioid lichens (Teloschistaceae, Ascomycota) based on ITS and mtSSU sequences , 2009 .

[63]  J. Lendemer,et al.  Reassessment of the genus Catillochroma (lichenized Ascomycota, Ramalinaceae) , 2010, The Lichenologist.

[64]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[65]  D. Barker,et al.  Evolutionary history of vegetative reproduction in Porpidia s.L. (Lichen-forming ascomycota). , 2006, Systematic biology.

[66]  O. W. Purvis The Lichen Flora of Great Britain and Ireland , 1993 .

[67]  I. Brodo,et al.  Lichens of North America , 2002 .

[68]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[69]  R. Gazis,et al.  Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. , 2012, Molecular phylogenetics and evolution.

[70]  J. Hafellner Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae , 1984 .

[71]  R. Lücking,et al.  Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. , 2009, American journal of botany.

[72]  J. Hyvönen,et al.  Phylogeny and taxonomy of the ‘manna lichens’ , 2012, Mycological Progress.

[73]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[74]  H. Lumbsch,et al.  Phylogeny of Pertusariales (Ascomycotina): resurrection of Ochrolechiaceae and new circumscription of Megasporaceae (Papers to Commemorate the 100th Issue of the Journal of the Hattori Botanical Laboratory) -- (Lichenology) , 2006 .

[75]  Cymon J Cox,et al.  WASABI: an automated sequence processing system for multigene phylogenies. , 2007, Systematic biology.

[76]  H. Lumbsch A Comparison of Ascoma Ontogeny Supports the Inclusion of the Eigleraceae in the Hymeneliaceae (Lecanorales) , 1997 .

[77]  Jolanta Miadlikowska,et al.  A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? , 2009, Systematic biology.

[78]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[79]  C. Printzen,et al.  Taxonomy of the genus Myrionora, with a second species from South America , 2013, The Lichenologist.

[80]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[81]  A. Nordin,et al.  Phylogeny and taxonomy of Aspicilia and Megasporaceae , 2010, Mycologia.

[82]  R. Lücking,et al.  Further evidence for the polyphyly of Lepraria (Lecanorales: Stereocaulaceae) , 2008 .

[83]  Bruce McCune,et al.  Umbilicaria semitensis (lichenized fungi: Umbilicariaceae) resurrected , 2012 .

[84]  F. Lutzoni,et al.  Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. , 2004, Molecular phylogenetics and evolution.

[85]  T. Green,et al.  Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. , 2012, Annals of botany.

[86]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[87]  M. Nelsen,et al.  The cetrarioid core group revisited (Lecanorales: Parmeliaceae) , 2011, The Lichenologist.

[88]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[89]  M. Nelsen,et al.  Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. , 2014, The New phytologist.

[90]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[91]  L. Rabenhorst Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz , 1881 .

[92]  Imke Schmitt,et al.  Phylogeny of the lichen genus Placopsis and its allies based on Bayesian analyses of nuclear and mitochondrial sequences , 2003, Mycologia.

[93]  Martin Grube,et al.  New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. , 2006, Mycologia.

[94]  A new species of Loxospora (lichenized Ascomycota: Sarrameanaceae) from Australia , 2007, The Lichenologist.

[95]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[96]  Jeffrey P Townsend,et al.  Profiling phylogenetic informativeness. , 2007, Systematic biology.

[97]  R. Harris,et al.  Lecanora thysanophora, a Common Leprose Lichen in Eastern North America , 2000 .

[98]  M. Wedin,et al.  The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). , 2008, Systematic biology.

[99]  P. Wagner,et al.  Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. , 2000, Systematic biology.

[100]  R. Lücking,et al.  The lichens of Fakahatchee Strand Preserve State Park, Florida: Proceedings from the 18th Tuckerman Workshop , 2011 .

[101]  F. Kauff,et al.  Single origin and subsequent diversification of central Andean endemic Umbilicaria species , 2011, Mycologia.

[102]  O. W. Purvis,et al.  A Review of Psilolechia , 1987, The Lichenologist.

[103]  J. Elix,et al.  Ramboldia, a New Genus in the Lichen Family Lecanoraceae , 1994 .

[104]  O. Eriksson,et al.  Outline of Ascomycota , 2004 .

[105]  T. Lumbsch,et al.  A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota) , 2012 .

[106]  M. Wedin,et al.  Collema fasciculare belongs in Arctomiaceae , 2013, The Lichenologist.

[107]  Arend Sidow,et al.  Molecular phylogeny , 1992, Current Biology.

[108]  I. Brodo,et al.  The typification of Lecanora subfusca (L.) Ach., its varieties, and some of its related taxa published before 1850 , 1984 .

[109]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[110]  H. Lumbsch,et al.  Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). , 2007, Mycological research.

[111]  G. Thor,et al.  A phylogenetic study of Fuscideaceae using mtSSU rDNA , 2007 .

[112]  Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota) , 2012, Fungal Diversity.

[113]  P. Škaloud,et al.  Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae) , 2011, Molecular ecology.

[114]  H. Lumbsch,et al.  Molecular systematics supports the recognition of an additional order of Ascomycota: the Agyriales , 2001 .

[115]  K. Holsinger,et al.  Polytomies and Bayesian phylogenetic inference. , 2005, Systematic biology.

[116]  Rikke Reese Naesborg,et al.  Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). , 2007, Mycological research.

[117]  A. Tehler,et al.  Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship , 2013 .

[118]  I. Kärnefelt,et al.  Revision of three natural groups of xanthorioid lichens (Teloschistaceae, Ascomycota) , 2003 .

[119]  R. Lücking,et al.  The phylogenetic position of Malmidea, a new genus for the Lecidea piperis- and Lecanora granifera-groups Lecanorales, Malmideaceae inferred from nuclear and mitochondrial ribosomal DNA sequences, with special reference to Thai species. , 2011 .

[120]  U. Arup,et al.  Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequence data. , 2007, Mycological research.

[121]  K. Knudsen,et al.  Lichenological notes 3: Sarcogyne plicata in California , 2012 .

[122]  F. Lutzoni,et al.  Phylogenetic Revision of the Genus Peltigera (Lichen‐Forming Ascomycota) Based on Morphological, Chemical, and Large Subunit Nuclear Ribosomal DNA Data , 2000, International Journal of Plant Sciences.

[123]  R. Türk,et al.  Die lichenisierten Pilze Österreichs - eine Checkliste der bisher nachgewiesenen Arten mit Verbreitungsangaben , 2001 .

[124]  F. Lutzoni,et al.  Assessing population structure and host specialization in lichenized cyanobacteria. , 2013, The New phytologist.

[125]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[126]  I. Martínez,et al.  Does the Reproductive Strategy Affect the Transmission and Genetic Diversity of Bionts in Cyanolichens? A Case Study Using Two Closely Related Species , 2012, Microbial Ecology.

[127]  I. Martínez,et al.  Cardinal characters on a slippery slope--a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). , 2013, Molecular phylogenetics and evolution.

[128]  D. Ertz,et al.  Savoronala, a new genus of Malmideaceae (Lecanorales) from Madagascar with stipes producing sporodochia , 2013, Mycological Progress.

[129]  Manolo Gouy,et al.  SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny , 1996, Comput. Appl. Biosci..

[130]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[131]  S. Ekman The corticolous and lignicolous species of Bacidia and Bacidina in North America , 1999 .

[132]  G. Helms,et al.  Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters , 2003, Mycologia.

[133]  O. Nadyeina,et al.  Photobiont composition of some taxa of the genera Micarea and Placynthiella (Lecanoromycetes, lichenized Ascomycota) from Ukraine , 2011 .

[134]  L. Muggia,et al.  Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). , 2011, American journal of botany.

[135]  M. Wedin,et al.  Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes) , 2010, The Lichenologist.

[136]  M. Grube,et al.  The sister group relation of parmeliaceae (Lecanorales, Ascomycota). , 2007, Mycologia.

[137]  S. Ekman,et al.  Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. , 2005, Mycological research.

[138]  H. Lumbsch,et al.  A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. , 2012 .

[139]  K. Knudsen,et al.  The name Myriospora is available for the Acarospora smaragdula group , 2012 .

[140]  F. Lutzoni,et al.  Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. , 2004, American journal of botany.

[141]  C. Printzen,et al.  Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata , 2011, Molecular ecology.

[142]  F. Kauff,et al.  Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). , 2007, Molecular phylogenetics and evolution.

[143]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[144]  B. Hodkinson,et al.  Chirleja buckii, a new genus and species of lichenized-fungi from Tierra del Fuego, southern South America , 2012 .

[145]  P. Škaloud,et al.  Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). , 2010, Molecular phylogenetics and evolution.

[146]  M. Wedin,et al.  Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). , 2009, Molecular phylogenetics and evolution.

[147]  R. Lücking,et al.  A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales) , 2011, Fungal Diversity.

[148]  M. Wedin,et al.  Molecular Phylogeny of the Lichen Families Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina) , 2000, The Lichenologist.

[149]  M. Wedin,et al.  The phylogenetic relationship of the Sphaerophoraceae, Austropeltum and Neophyllis (lichenized Ascomycota) inferred by SSU rDNA sequences , 1999 .

[150]  R. Lücking,et al.  The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. , 2007, Mycological research.

[151]  O. Eriksson,et al.  Supraordinal taxa of Ascomycota , 1997 .

[152]  M. Wedin,et al.  A monograph of the genus Placomaronea (Ascomycota, Candelariales) , 2009, The Lichenologist.

[153]  J. Hyvönen,et al.  Phylogenetic relationships of Stereocaulaceae based on simultaneous analysis of beta‐tubulin, GAPDH and SSU rDNA sequences , 2005 .

[154]  J. Elix,et al.  Molecular phylogeny of xanthorioid lichens (Teloschistaceae, Ascomycota), with notes on their morphology. , 2012 .

[155]  M. Wedin,et al.  Massalongiaceae fam. nov., an overlooked monophyletic group among the cyanobacterial lichens (Peltigerales, Lecanoromycetes, Ascomycota) , 2006, The Lichenologist.

[156]  H. Lumbsch,et al.  Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae, Ascomycota). , 2006, Molecular phylogenetics and evolution.

[157]  J. Lendemer,et al.  A radical shift in the taxonomy of Lepraria s.l.: Molecular and morphological studies shed new light on the evolution of asexuality and lichen growth form diversification , 2013, Mycologia.

[158]  H. Lumbsch,et al.  Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. , 2005, Mycological research.

[159]  V. Wirth,et al.  Die Flechten Baden-Württembergs , 1995 .

[160]  A. Tehler,et al.  Lichen Biology: Systematics of lichenized fungi , 2008 .