Aerosol hygroscopicity in the southeastern US

Introduction Conclusions References

[1]  J. Peischl,et al.  In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC 4 RS: observations of a modest aerosol enhancement aloft , 2015 .

[2]  J. Peischl,et al.  Airborne measurements of organosulfates over the continental U.S. , 2015, Journal of geophysical research. Atmospheres : JGR.

[3]  D. Fahey,et al.  Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer , 2015 .

[4]  J. Jimenez,et al.  Biomass burning dominates brown carbon absorption in the rural southeastern United States , 2015 .

[5]  J. Seinfeld,et al.  Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols , 2014 .

[6]  J. R. Hite,et al.  Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States , 2014, Proceedings of the National Academy of Sciences.

[7]  M. Petters,et al.  Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study , 2014 .

[8]  J. Reid,et al.  Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to the O/C ratio. , 2013, The journal of physical chemistry. A.

[9]  Jack J. Lin,et al.  Composition and hygroscopicity of the Los Angeles Aerosol: CalNex , 2013 .

[10]  M. Petters,et al.  An annual cycle of size‐resolved aerosol hygroscopicity at a forested site in Colorado , 2012 .

[11]  U. Pöschl,et al.  Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake , 2011 .

[12]  D. Murphy,et al.  Aircraft Instrument for Comprehensive Characterization of Aerosol Optical Properties, Part I: Wavelength-Dependent Optical Extinction and Its Relative Humidity Dependence Measured Using Cavity Ringdown Spectroscopy , 2011 .

[13]  M. Petters,et al.  Hygroscopicity frequency distributions of secondary organic aerosols , 2010 .

[14]  T. Petäjä,et al.  Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest , 2010 .

[15]  P. Pilewskie,et al.  Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project , 2010 .

[16]  I. Barmpadimos,et al.  Relating hygroscopicity and composition of organic aerosol particulate matter , 2010 .

[17]  J. Lelieveld,et al.  Global distribution of the effective aerosol hygroscopicity parameter for CCN activation , 2010 .

[18]  J. Slowik,et al.  The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation , 2010 .

[19]  M. Andreae,et al.  Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events , 2010 .

[20]  D. Topping,et al.  Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise , 2009 .

[21]  D. Topping,et al.  Widening the gap between measurement and modelling ofsecondary organic aerosol properties , 2009 .

[22]  M. Petters,et al.  Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements , 2009 .

[23]  A. Stohl,et al.  Aerosol optical and hygroscopic properties during TexAQS‐GoMACCS 2006 and their impact on aerosol direct radiative forcing , 2009 .

[24]  Yong Cai,et al.  Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies , 2008 .

[25]  J. Jimenez,et al.  Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens , 2008 .

[26]  H. L. Wright Atmospheric opacity: A study of visibility observations in the British Isles , 2008 .

[27]  Katrin Fuhrer,et al.  Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. , 2006, Analytical chemistry.

[28]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[29]  Mark J. Rood,et al.  Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization , 2005 .

[30]  M. Hegglin,et al.  Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: an overview , 2005 .

[31]  J. Santarpia,et al.  Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations , 2005 .

[32]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[33]  J. Hand,et al.  A New Method for Retrieving Particle Refractive Index and Effective Density from Aerosol Size Distribution Data , 2002 .

[34]  Peter V. Hobbs,et al.  Humidification factors for atmospheric aerosols off the mid‐Atlantic coast of the United States , 1999 .

[35]  T. Larson,et al.  A theoretical study of the effect of relative humidity on light scattering by tropospheric aerosols , 1993 .

[36]  L. Jenne,et al.  Global distribution of total cloud cover and cloud type amounts over land , 1986 .

[37]  P. Barber,et al.  Absorption and scattering of light by small particles , 1984 .

[38]  Peter Chylek,et al.  Extinction and Liquid Water Content of Fogs and Clouds , 1978 .

[39]  Owen B. Toon,et al.  The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride , 1976 .

[40]  G. Hänel The Single-Scattering Albedo of Atmospheric Aerosol Particles as a Function of Relative Humidity , 1976 .

[41]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[42]  Gottfried Hänel,et al.  Computation of the extinction of visible radiation by atmospheric aerosol particles as a function of the relative humidity, based upon measured properties , 1972 .

[43]  Robert J. Charlson,et al.  A Study of the Relationship of Chemical Composition and Humidity to Light Scattering by Aerosols , 1972 .

[44]  F. Kasten Visibility forecast in the phase of pre-condensation , 1969 .

[45]  Robert J. Charlson,et al.  The direct measurement of atmospheric light scattering coefficient for studies of visibility and pollution , 1967 .

[46]  S. Friedlander,et al.  The self-preserving particle size distribution for coagulation by brownian motion☆ , 1966 .

[47]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[48]  C. Boyd Supplement of Secondary organic aerosol formation from the β-pinene + NO 3 system : effect of humidity and peroxy radical fate , 2015 .

[49]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[50]  P. Artaxo,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei in Pristine Tropical Rainforest Air of Amazonia: Size-resolved Measurements and Modeling of Atmospheric Aerosol Composition and Ccn Activity , 2022 .

[51]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[52]  R. D. Foltz CRC Handbook of Chemistry and Physics:A Ready-Reference Book of Chemical and Physical Data , 2000 .

[53]  G. Hänel The ratio of the extinction coefficient to the mass of atmospheric aerosol particles as a function of the relative humidity , 1972 .