Single-ion magnetic anisotropy and isotropic magnetic couplings in the metal-organic framework Fe2(dobdc).

The metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate), often referred to as Fe-MOF-74, possesses many interesting properties such as a high selectivity in olefin/paraffin separations. This compound contains open-shell Fe(II) ions with open coordination sites which may have large single-ion magnetic anisotropies, as well as isotropic couplings between the nearest and next nearest neighbor magnetic sites. To complement a previous analysis of experimental data made by considering only isotropic couplings [Bloch et al. Science 2012, 335, 1606], the magnitude of the main magnetic interactions are here assessed with quantum chemical calculations performed on a finite size cluster. It is shown that the single-ion anisotropy is governed by same-spin spin-orbit interactions (i.e., weak crystal-field regime), and that this effect is not negligible compared to the nearest neighbor isotropic couplings. Additional magnetic data reveal a metamagnetic behavior at low temperature. This effect can be attributed to various microscopic interactions, and the most probable scenarios are discussed.

[1]  D. Truhlar,et al.  Adsorption on Fe-MOF-74 for C1–C3 Hydrocarbon Separation , 2013 .

[2]  J. Long,et al.  Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2013 .

[3]  Joseph M. Zadrozny,et al.  Slow magnetization dynamics in a series of two-coordinate iron(II) complexes , 2013 .

[4]  Y. Chabal,et al.  When metal organic frameworks turn into linear magnets , 2013, 1302.6886.

[5]  J. van den Brink,et al.  Magnetic state of pyrochlore Cd(2)Os(2)O(7) emerging from strong competition of ligand distortions and longer-range crystalline anisotropy. , 2013, Physical review letters.

[6]  N. Guihéry,et al.  Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: experiment and theory. , 2013, Journal of the American Chemical Society.

[7]  M. Odelius,et al.  Zero-field splitting in nickel(II) complexes: a comparison of DFT and multi-configurational wavefunction calculations. , 2013, The Journal of chemical physics.

[8]  C. de Graaf,et al.  Origin of the magnetic anisotropy in heptacoordinate Ni(II) and Co(II) complexes. , 2013, Chemistry.

[9]  Frank Neese,et al.  A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior , 2013 .

[10]  A. Ozarowski,et al.  Structure and Magnetic Behavior of CuII MOFs Supported by 1,2,4‐Triazolyl‐Bifunctionalized Adamantane Scaffold , 2012 .

[11]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[12]  L. Chibotaru,et al.  Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. , 2012, The Journal of chemical physics.

[13]  E. Bartolomé,et al.  Magnetic properties of the seven-coordinated nanoporous framework material Co(bpy)1.5(NO3)2 (bpy = 4,4'-bipyridine). , 2012, Dalton transactions.

[14]  M. Ferbinteanu,et al.  Broken symmetry DFT calculations of exchange coupling constants for manganese–porphyrin quasi-one-dimensional molecular magnets , 2012, Theoretical Chemistry Accounts.

[15]  R. Broer,et al.  Magnetic interactions in LiCu2O2: Single-chain versus double-chain models , 2012 .

[16]  J. Telser,et al.  Simple ligand-field theory of d4 and d6 transition metal complexes with a C3 symmetry axis. , 2012, Inorganic chemistry.

[17]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[18]  L. Vendier,et al.  Pentacoordinate Ni(II) complexes: preparation, magnetic measurements, and ab initio calculations of the magnetic anisotropy terms. , 2012, Chemistry.

[19]  S. Nguyen,et al.  High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. , 2012, Angewandte Chemie.

[20]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[21]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[22]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[23]  N. Guihéry,et al.  First-principles study of magnetic interactions in cupric oxide , 2012 .

[24]  J. Sutter,et al.  Study of Low Temperature Magnetic Properties of a Single Chain Magnet with Alternate Isotropic and Non-collinear Anisotropic Units , 2011, 1110.0933.

[25]  L. Vendier,et al.  Magnetic anisotropy in Ni(II)-Y(III) binuclear complexes: on the importance of both the first coordination sphere of the Ni(II) ion and the Y(III) ion belonging to the second coordination sphere. , 2011, Inorganic chemistry.

[26]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[27]  D. Pantazis,et al.  Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2011, Inorganic chemistry.

[28]  C. Serre,et al.  Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100. , 2011, Physical chemistry chemical physics : PCCP.

[29]  F. Neese,et al.  Theoretical determination of the zero-field splitting in copper acetate monohydrate. , 2011, Inorganic chemistry.

[30]  S. Schmitt,et al.  Zero-field splittings from density functional calculations: analysis and improvement of known methods. , 2011, The Journal of chemical physics.

[31]  M. Drew,et al.  Structure and magnetic properties of an unprecedented syn-anti μ-nitrito-1κO:2κO' bridged Mn(III)-salen complex and its isoelectronic and isostructural formate analogue. , 2011, Dalton transactions.

[32]  J. Long,et al.  Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2010, Journal of the American Chemical Society.

[33]  C. de Graaf,et al.  Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems. , 2010, Journal of chemical theory and computation.

[34]  F. Neese,et al.  Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. , 2010, The journal of physical chemistry. A.

[35]  C. de Graaf,et al.  Magnetostructural relations from a combined ab initio and ligand field analysis for the nonintuitive zero-field splitting in Mn(III) complexes. , 2010, The Journal of chemical physics.

[36]  C. Duhayon,et al.  Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{Fe(II)L}2{Nb(IV)(CN)8}] helical chain compound designed with heptacoordinate Fe(II). , 2010, Journal of the American Chemical Society.

[37]  N. Guihéry,et al.  Rigorous Extraction of the Anisotropic Multispin Hamiltonian in Bimetallic Complexes from the Exact Electronic Hamiltonian. , 2010, Journal of chemical theory and computation.

[38]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[39]  J. Veciana,et al.  Magnetic and porous molecule-based materials. , 2010, Topics in current chemistry.

[40]  N. Guihéry,et al.  Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. , 2009, Journal of chemical theory and computation.

[41]  T. Takui,et al.  Ab initio calculations of spin–orbit contribution to the zero-field splitting tensors of nπ∗ excited states by the CASSCF method with MRMP2 energy correction , 2009 .

[42]  Celestino Angeli,et al.  Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited. , 2009, The Journal of chemical physics.

[43]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[44]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[45]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[46]  G. Scuseria,et al.  Reliability of range-separated hybrid functionals for describing magnetic coupling in molecular systems. , 2008, The Journal of chemical physics.

[47]  Liviu F Chibotaru,et al.  Structure, magnetism, and theoretical study of a mixed-valence Co(II)3Co(III)4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. , 2008, Journal of the American Chemical Society.

[48]  F. Neese,et al.  Ab initio and coupled-perturbed density functional theory estimation of zero-field splittings in MnII transition metal complexes. , 2008, The journal of physical chemistry. A.

[49]  Liviu F Chibotaru,et al.  The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. , 2008, Angewandte Chemie.

[50]  K. Pierloot,et al.  Multiconfigurational g tensor calculations as a probe for the covalency of the copper-ligand bonds in copper(II) complexes: [CuCl4]2-, [Cu(NH3)4]2+, and plastocyanin. , 2008, The journal of physical chemistry. A.

[51]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[52]  F. Illas,et al.  Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. , 2008, The Journal of chemical physics.

[53]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[54]  F. Neese,et al.  A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. , 2008, Inorganic chemistry.

[55]  Frank Neese,et al.  Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. , 2007, The Journal of chemical physics.

[56]  M. Plumer Biquadratic antisymmetric exchange and the magnetic phase diagram of magnetoelectricCuFeO2 , 2007, 0704.3566.

[57]  A. Moskvin Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects , 2006, cond-mat/0610537.

[58]  J. Telser A perspective on applications of ligand-field analysis: inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions , 2006 .

[59]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[60]  Frank Neese,et al.  First-principles calculations of zero-field splitting parameters. , 2006, The Journal of chemical physics.

[61]  F. Neese Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. , 2006, Journal of the American Chemical Society.

[62]  Francesc Illas,et al.  A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics. , 2006, Physical chemistry chemical physics : PCCP.

[63]  C. Sousa,et al.  Assessing the Zero-Field Splitting in Magnetic Molecules by Wave Function- Based Methods , 2006 .

[64]  F. Aquino,et al.  First-principle computation of zero-field splittings: application to a high valent Fe(IV)-oxo model of nonheme iron proteins. , 2005, The Journal of chemical physics.

[65]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[66]  Frank Neese,et al.  Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. , 2005, The Journal of chemical physics.

[67]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[68]  B. Roos,et al.  Relativistic quantum chemistry: the multiconfigurational approach , 2004 .

[69]  R. Boča Zero-field splitting in metal complexes , 2004 .

[70]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[71]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[72]  Jean-Paul Malrieu,et al.  Analysis of the magnetic coupling in binuclear complexes. II. Derivation of valence effective Hamiltonians from ab initio CI and DFT calculations , 2002 .

[73]  J. Malrieu,et al.  Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling , 2002 .

[74]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[75]  A. F. Hill,et al.  Organotransition Metal Chemistry , 2000 .

[76]  Mark R. Pederson,et al.  Magnetic anisotropy barrier for spin tunneling in Mn 12 O 12 molecules , 1999 .

[77]  R. Boča Theoretical foundations of molecular magnetism , 1999 .

[78]  F. Neese,et al.  Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. , 1998, Inorganic chemistry.

[79]  A. Epstein,et al.  Magnetic dipole-dipole interactions and single-ion anisotropy : Revisiting a classical approach to magnets , 1997 .

[80]  L. Seijo,et al.  Ab initio model potential calculations on the electronic spectrum of Ni2+‐doped MgO including correlation, spin–orbit and embedding effects , 1996 .

[81]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[82]  M. Hendrich,et al.  Integer-spin electron paramagnetic resonance of iron proteins. , 1989, Biophysical journal.

[83]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[84]  A. D. McLachlan,et al.  Introduction to magnetic resonance : with applications to chemistry and chemical physics , 1967 .

[85]  R. Mcweeny On the Origin of Spin‐Hamiltonian Parameters , 1965 .

[86]  A. McLachlan Spin-spin coupling Hamiltonian in spin multiplets , 1963 .

[87]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[88]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[89]  J. V. Vleck The Coupling of Angular Momentum Vectors in Molecules , 1951 .

[90]  A. Abragam,et al.  Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[91]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .

[92]  J. V. Vleck A Survey of the Theory of Ferromagnetism , 1945 .

[93]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[94]  W. Heisenberg Zur Theorie des Ferromagnetismus , 1928 .