Sequential importance sampling for estimating expectations over the space of perfect matchings

O(n 1−2λ 8λ + ) samples. With size n on each side and for 2 > λ > 0, a λ-dense bipartite graph has all degrees greater than (λ+ 1 2 )n. Second, practical applications of the algorithm requires many calls to matching algorithms. A novel preprocessing step is provided which makes significant improvements. Third, three applications are provided. The first is for counting Latin squares, the second is a practical way of computing the greedy algorithm for a card guessing game with feedback, and the third is for stochastic block models. In all three examples, sequential importance sampling allows treating practical problems of reasonably large sizes.

[1]  B. Efron Forcing a sequential experiment to be balanced , 1971 .

[2]  Mark Huber,et al.  Fast approximation of the permanent for very dense problems , 2008, SODA '08.

[3]  Persi Diaconis,et al.  Sequential Importance Sampling for Estimating the Number of Perfect Matchings in Bipartite Graphs: An Ongoing Conversation with Laci , 2019, Bolyai Society Mathematical Studies.

[4]  Lars Eilstrup Rasmussen,et al.  Approximating the Permanent: A Simple Approach , 1994, Random Struct. Algorithms.

[5]  Ronald L. Graham,et al.  On the permanents of complements of the direct sum of identity matrices , 1981 .

[6]  P Diaconis,et al.  Statistical problems in ESP research. , 1978, Science.

[7]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[8]  Persi Diaconis,et al.  Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs , 2019, Adv. Appl. Math..

[9]  R. Graham,et al.  Guessing about Guessing: Practical Strategies for Card Guessing with Feedback , 2020, Am. Math. Mon..

[10]  P. Matthews,et al.  Generating uniformly distributed random latin squares , 1996 .

[11]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[12]  Norbert Seifter,et al.  Upper bounds for permanents of (1, − 1)-matrices , 1984 .

[13]  Tamir Tassa,et al.  Finding all maximally-matchable edges in a bipartite graph , 2012, Theor. Comput. Sci..

[14]  Francis Sullivan,et al.  A Sequential Importance Sampling Algorithm for Counting Linear Extensions , 2019, ArXiv.

[15]  Stephen DeSalvo,et al.  Exact Sampling Algorithms for Latin Squares and Sudoku Matrices via Probabilistic Divide-and-Conquer , 2015, Algorithmica.

[16]  Charles M. Stein,et al.  Asymptotic Evaluation of the Number of Latin Rectangles , 1978, J. Comb. Theory, Ser. A.

[17]  Paul Erdös,et al.  The Asymptotic Number of Latin Rectangles , 1946 .

[18]  David Gamarnik,et al.  Simple deterministic approximation algorithms for counting matchings , 2007, STOC '07.

[19]  Ronald L. Graham,et al.  Statistical Problems Involving Permutations With Restricted Positions , 1999 .

[20]  I. Beichl,et al.  Approximating the Permanent via Importance Sampling with Application to the Dimer Covering Problem , 1999 .

[21]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[22]  A. Timashov On permanents of random doubly stochastic matrices and asymptotic estimates of the nom hers of Latin rectangles and Latin squares , 2002 .

[23]  S. Ethier,et al.  On the fundamental theorem of card counting, with application to the game of trente et quarante , 2005, Advances in Applied Probability.

[24]  Francis Sullivan,et al.  Fast Sequential Importance Sampling to Estimate the Graph Reliability Polynomial , 2012, Algorithmica.

[25]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[26]  D. Knuth A Permanent Inequality , 1981 .

[27]  Patrick Eugene O’Neil Asymptotics in random (0,1)-matrices , 1970 .

[28]  Avi Wigderson,et al.  Much Faster Algorithms for Matrix Scaling , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[29]  Koichiro Yamamoto,et al.  An Asymptotic Series for the Number of Three-Line Latin Rectangles , 1950 .

[30]  Nima Anari,et al.  A Tight Analysis of Bethe Approximation for Permanent , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[31]  Arthur O. Pittenger,et al.  Mappings of latin squares , 1997 .

[32]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[33]  Douglas S. Stones The Many Formulae for the Number of Latin Rectangles , 2010, Electron. J. Comb..

[34]  Piotr Sankowski Alternative Algorithms for Counting All Matchings in Graphs , 2003, STACS.

[35]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[36]  P. Diaconis,et al.  The sample size required in importance sampling , 2015, 1511.01437.

[37]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[38]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[39]  J. L. Hodges,et al.  Design for the Control of Selection Bias , 1957 .

[40]  Ronald L. Graham,et al.  The Analysis of Sequential Experiments with Feedback to Subjects , 1981 .

[41]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[42]  Ian M. Wanless,et al.  On the Number of Latin Squares , 2005, 0909.2101.

[43]  Roland Häggkvist,et al.  All-even latin squares , 1996, Discret. Math..

[44]  Ravindra B. Bapat Permanents in probability and statistics , 1990 .

[45]  Mark B. Wells,et al.  The number of latin squares of order eight , 1967 .

[46]  N. Yu. Kuznetsov,et al.  Estimating the number of latin rectangles by the fast simulation method , 2009 .

[47]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[48]  Fanny Dufossé,et al.  Scaling matrices and counting the perfect matchings in graphs , 2020, Discret. Appl. Math..

[49]  J. I The Design of Experiments , 1936, Nature.

[50]  Brendan D. McKay,et al.  Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.

[51]  Moshe Y. Vardi,et al.  FPRAS Approximation of the Matrix Permanent in Practice , 2020, ArXiv.

[52]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..

[53]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[54]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..