What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?

[1]  S. Degroeve,et al.  Updated MS²PIP web server supports cutting-edge proteomics applications , 2023, Nucleic Acids Res..

[2]  Xuebing Wu,et al.  Noncoding translation mitigation , 2023, Nature.

[3]  Robert J. Weatheritt,et al.  Global detection of human variants and isoforms by deep proteome sequencing , 2023, Nature Biotechnology.

[4]  B. Snel,et al.  Evolution and implications of de novo genes in humans , 2023, Nature Ecology & Evolution.

[5]  J. Griffith,et al.  Mammalian telomeric RNA (TERRA) can be translated to produce valine–arginine and glycine–leucine dipeptide repeat proteins , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Bassani-Sternberg,et al.  The impact of immunopeptidomics: From basic research to clinical implementation. , 2023, Seminars in immunology.

[7]  Jonathan M. Mudge,et al.  Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames , 2023, Molecular cell.

[8]  Philipp T Kaulich,et al.  Proteoforms expand the world of microproteins and short open reading frame-encoded peptides , 2023, iScience.

[9]  Yuanqing Chang,et al.  A systematic evaluation revealed that detecting translated non-canonical ORFs from ribosome profiling data remains challenging , 2022, bioRxiv.

[10]  A. McLysaght,et al.  De novo birth of functional microproteins in the human lineage , 2022, Cell reports.

[11]  James C. Wright,et al.  GENCODE: reference annotation for the human and mouse genomes in 2023 , 2022, Nucleic Acids Res..

[12]  Cathy H. Wu,et al.  UniProt: the Universal Protein Knowledgebase in 2023 , 2022, Nucleic Acids Res..

[13]  I. Varela,et al.  pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation , 2022, Nature Communications.

[14]  R. Aebersold,et al.  The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. , 2022, Journal of proteome research.

[15]  Xuebing Wu,et al.  A unified model for the surveillance of translation in diverse noncoding sequences , 2022, bioRxiv.

[16]  Jonathan M. Mudge,et al.  Standardized annotation of translated open reading frames , 2022, Nature Biotechnology.

[17]  K. Gevaert,et al.  Limited Evidence for Protein Products of Noncoding Transcripts in the HEK293T Cellular Cytosol , 2022, Molecular & cellular proteomics : MCP.

[18]  Yang Luo,et al.  Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. , 2022, Molecular cell.

[19]  John F. Ouyang,et al.  A high-resolution map of human RNA translation. , 2022, Molecular cell.

[20]  P. Baranov,et al.  Non-AUG translation initiation in mammals , 2022, Genome biology.

[21]  T. Ideker,et al.  An open invitation to the Understudied Proteins Initiative , 2022, Nature Biotechnology.

[22]  Jonathan M. Mudge,et al.  Thousands of human non-AUG extended proteoforms lack evidence of evolutionary selection among mammals , 2022, bioRxiv.

[23]  Lindsay K. Pino,et al.  Profiling Mouse Brown and White Adipocytes to Identify Metabolically Relevant Small ORFs and Functional Microproteins , 2022, bioRxiv.

[24]  Cheryl F. Lichti,et al.  Navigating Critical Challenges Associated with Immunopeptidomics-Based Detection of Proteasomal Spliced Peptide Candidates. , 2022, Cancer immunology research.

[25]  E. Bornberg-Bauer,et al.  Experimental characterisation of de novo proteins and their unevolved random-sequence counterparts , 2022, bioRxiv.

[26]  Ramneek Gupta,et al.  TIS Transformer: remapping the human proteome using deep learning , 2021, bioRxiv.

[27]  Alan M. Moses,et al.  Developmental Dynamics of RNA Translation in the Human Brain , 2021, bioRxiv.

[28]  N. Hacohen,et al.  Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer , 2021, Nature Biotechnology.

[29]  G. Coukos,et al.  Identification of tumor antigens with immunopeptidomics , 2021, Nature Biotechnology.

[30]  Ilan Y. Smoly,et al.  Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs , 2021, Proceedings of the National Academy of Sciences.

[31]  Remco Nagel,et al.  Oncogene-dependent sloppiness in mRNA translation. , 2021, Molecular cell.

[32]  Dana R. Valley,et al.  Proteogenomic characterization of pancreatic ductal adenocarcinoma , 2021, Cell.

[33]  Yang Luo,et al.  Phosphorylation of a Human Microprotein Promotes Dissociation of Biomolecular Condensates. , 2021, Journal of the American Chemical Society.

[34]  J. Deuchars,et al.  Cytoplasmic long noncoding RNAs are differentially regulated and translated during human neuronal differentiation , 2021, RNA.

[35]  Jennifer G. Abelin,et al.  MS-Based HLA-II Peptidomics Combined With Multiomics Will Aid the Development of Future Immunotherapies , 2021, Molecular & cellular proteomics : MCP.

[36]  S. Carr,et al.  Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics , 2021, Nature Communications.

[37]  Jacob D. Jaffe,et al.  Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity , 2021, Nature.

[38]  Runsheng Chen,et al.  SmProt: A Reliable Repository with Comprehensive Annotation of Small Proteins Identified from Ribosome Profiling , 2021, bioRxiv.

[39]  K. Au,et al.  Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm , 2021, Nature Communications.

[40]  S. Elsässer,et al.  Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins , 2021, The FEBS journal.

[41]  Zexian Liu,et al.  An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism , 2021, Cell Metabolism.

[42]  Joshua M. Dempster,et al.  Noncanonical open reading frames encode functional proteins essential for cancer cell survival , 2021, Nature Biotechnology.

[43]  K. Lilley,et al.  Pan-cancer analysis of transcripts encoding novel open-reading frames (nORFs) and their potential biological functions , 2021, NPJ genomic medicine.

[44]  Wout Bittremieux,et al.  Universal Spectrum Identifier for mass spectra , 2020, Nature Methods.

[45]  Jeffrey R. Whiteaker,et al.  Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy , 2020, Cell.

[46]  Aïda Ouangraoua,et al.  OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes , 2020, Nucleic Acids Res..

[47]  A. Bhatt,et al.  Structured RNA Contaminants in Bacterial Ribo-Seq , 2020, mSphere.

[48]  Rebekah L. Gundry,et al.  A high-stringency blueprint of the human proteome , 2020, Nature Communications.

[49]  Chunmei Cui,et al.  smORFunction: a tool for predicting functions of small open reading frames and microproteins , 2020, BMC Bioinformatics.

[50]  Uri Laserson,et al.  MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing. , 2020, Cell systems.

[51]  Audrey M. Michel,et al.  Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel protein POLGARF , 2020, Proceedings of the National Academy of Sciences.

[52]  Maria Virginia Ruiz Cuevas,et al.  Most non-canonical proteins uniquely populate the proteome or immunopeptidome. , 2020, Cell reports.

[53]  Bing Zhang,et al.  DeepRescore: Leveraging Deep Learning to Improve Peptide Identification in Immunopeptidomics , 2020, Proteomics.

[54]  Ning Zhang,et al.  Translation of small downstream ORFs enhances translation of canonical main open reading frames , 2020, The EMBO journal.

[55]  N. Hübner,et al.  Author response: A human ESC-based screen identifies a role for the translated lncRNA LINC00261 in pancreatic endocrine differentiation , 2020 .

[56]  B. Schilling,et al.  Identification of the Cryptic HLA-I Immunopeptidome , 2020, Cancer Immunology Research.

[57]  Sarah A. Slavoff,et al.  Comparative proteomic profiling of unannotated microproteins and alternative proteins in human cell lines. , 2020, Journal of proteome research.

[58]  S. Degroeve,et al.  DeepLC can predict retention times for peptides that carry as-yet unseen modifications , 2020, Nature Methods.

[59]  Sarah A. Slavoff,et al.  Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. , 2020, Experimental cell research.

[60]  M. Albà,et al.  Evolution of new proteins from translated sORFs in long non-coding RNAs. , 2020, Experimental cell research.

[61]  James C. Wright,et al.  Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon , 2020, BMC Genetics.

[62]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[63]  T. Ideker,et al.  De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences , 2020, Nature Communications.

[64]  J. Rappsilber,et al.  Proteomics Using Protease Alternatives to Trypsin Benefits from Sequential Digestion with Trypsin , 2020, bioRxiv.

[65]  V. Velculescu,et al.  High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets , 2019, Cancer Immunology Research.

[66]  Audrey M. Michel,et al.  Computational methods for ribosome profiling data analysis , 2019, Wiley interdisciplinary reviews. RNA.

[67]  Saket Choudhary,et al.  Accurate detection of short and long active ORFs using Ribo-seq data , 2019, Bioinform..

[68]  G. Learn,et al.  Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8+ T cells in HIV-1 infection , 2019, Proceedings of the National Academy of Sciences.

[69]  Maxim N. Shokhirev,et al.  Accurate annotation of human protein-coding small open reading frames , 2019, Nature Chemical Biology.

[70]  J. Puglisi,et al.  Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding , 2019, Cell.

[71]  N. Hacohen,et al.  A large peptidome dataset improves HLA class I epitope prediction across most of the human population , 2019, Nature Biotechnology.

[72]  Russ B. Altman,et al.  Predicting HLA class II antigen presentation through integrated deep learning , 2019, Nature Biotechnology.

[73]  George Coukos,et al.  Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes , 2019, Nature Biotechnology.

[74]  Jennifer G. Abelin,et al.  Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction. , 2019, Immunity.

[75]  Brian J. Stevenson,et al.  Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes , 2019, Nature Communications.

[76]  Eric W. Deutsch,et al.  Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0 , 2019, bioRxiv.

[77]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[78]  Massimo Andreatta,et al.  NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions , 2019, Molecular & Cellular Proteomics.

[79]  Mathias Wilhelm,et al.  Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning , 2019, Nature Methods.

[80]  Sri H. Ramarathinam,et al.  Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics , 2019, Nature Protocols.

[81]  U. Ohler,et al.  Quantification of translation uncovers the functions of the alternative transcriptome , 2019, bioRxiv.

[82]  W. Waegeman,et al.  DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns , 2019, Nucleic acids research.

[83]  Olivier Elemento,et al.  Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome , 2019, BMC Bioinformatics.

[84]  P. Gendron,et al.  Noncoding regions are the main source of targetable tumor-specific antigens , 2018, Science Translational Medicine.

[85]  S. D. Anderson,et al.  High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions , 2018, Cancer Immunology Research.

[86]  Zhi Xie,et al.  RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling , 2018, Nucleic Acids Res..

[87]  Aïda Ouangraoua,et al.  OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes , 2018, Nucleic Acids Res..

[88]  A. Karamyshev,et al.  Lost in Translation: Ribosome-Associated mRNA and Protein Quality Controls , 2018, Front. Genet..

[89]  S. Stevanović,et al.  Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry , 2018, Immunology.

[90]  Ralf Zimmer,et al.  Improved Ribo-seq enables identification of cryptic translation events , 2018, Nature Methods.

[91]  Lloyd M. Smith,et al.  How many human proteoforms are there? , 2018, Nature chemical biology.

[92]  C. Perreault,et al.  Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy , 2018, Cellular and Molecular Life Sciences.

[93]  Tao Liu,et al.  Genome-wide identification and differential analysis of translational initiation , 2017, Nature Communications.

[94]  M. Nielsen,et al.  NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data , 2017, The Journal of Immunology.

[95]  Lydie Lane,et al.  Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project. , 2017, Journal of proteome research.

[96]  Uwe Ohler,et al.  Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. , 2017, Trends in genetics : TIG.

[97]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[98]  Lennart Martens,et al.  Noncoding after All: Biases in Proteomics Data Do Not Explain Observed Absence of lncRNA Translation Products. , 2017, Journal of proteome research.

[99]  B. Blencowe The Relationship between Alternative Splicing and Proteomic Complexity. , 2017, Trends in biochemical sciences.

[100]  Xuerui Yang,et al.  De novo annotation and characterization of the translatome with ribosome profiling data , 2017, bioRxiv.

[101]  Hui Li,et al.  Control of muscle formation by the fusogenic micropeptide myomixer , 2017, Science.

[102]  Jennifer G. Abelin,et al.  Mass Spectrometry Profiling of HLA‐Associated Peptidomes in Mono‐allelic Cells Enables More Accurate Epitope Prediction , 2017, Immunity.

[103]  M. Tress,et al.  Alternative Splicing May Not Be the Key to Proteome Complexity. , 2017, Trends in biochemical sciences.

[104]  M. Mann,et al.  Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry , 2016, Nature Communications.

[105]  Uwe Ohler,et al.  Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis , 2016, Proceedings of the National Academy of Sciences.

[106]  M. Hirai,et al.  The Minimum Open Reading Frame, AUG-Stop, Induces Boron-Dependent Ribosome Stalling and mRNA Degradation , 2016, Plant Cell.

[107]  Jiao Ma,et al.  A human microprotein that interacts with the mRNA decapping complex , 2016, Nature chemical biology.

[108]  Lennart Martens,et al.  Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. , 2016, Journal of proteome research.

[109]  M. Deery,et al.  Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules , 2016, PloS one.

[110]  T. Tuller,et al.  Estimation of ribosome profiling performance and reproducibility at various levels of resolution , 2016, Biology Direct.

[111]  Antonio J Giraldez,et al.  Upstream ORFs are prevalent translational repressors in vertebrates , 2016, The EMBO journal.

[112]  Manolis Kellis,et al.  Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides. , 2016, Analytical chemistry.

[113]  S. Lemieux,et al.  Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames , 2016, Nature Communications.

[114]  Uwe Ohler,et al.  Detecting actively translated open reading frames in ribosome profiling data , 2015, Nature Methods.

[115]  Aviv Regev,et al.  A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation. , 2015, Molecular cell.

[116]  Yang I Li,et al.  Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling , 2015, bioRxiv.

[117]  A. Regev,et al.  Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins , 2015, eLife.

[118]  Lennart Martens,et al.  sORFs.org: a repository of small ORFs identified by ribosome profiling , 2015, Nucleic Acids Res..

[119]  Yan Wang,et al.  RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling , 2015, Nucleic Acids Res..

[120]  Thomas J. Hardcastle,et al.  The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis , 2015, RNA.

[121]  Sebastian D. Mackowiak,et al.  Extensive identification and analysis of conserved small ORFs in animals , 2015, Genome Biology.

[122]  J. Vandesompele,et al.  An update on LNCipedia: a database for annotated human lncRNA sequences , 2015, Nucleic Acids Res..

[123]  John M. Shelton,et al.  A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance , 2015, Cell.

[124]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[125]  L. Jensen,et al.  Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation* , 2015, Molecular & Cellular Proteomics.

[126]  B. Shen,et al.  A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites , 2014, Proteomics.

[127]  Ying Chen Eyre-Walker,et al.  Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq , 2014, eLife.

[128]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[129]  M. Albà,et al.  Long non-coding RNAs as a source of new peptides , 2014, eLife.

[130]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[131]  W. Van Criekinge,et al.  N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men* , 2014, Molecular & Cellular Proteomics.

[132]  Jiao Ma,et al.  Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors , 2014, Science.

[133]  J. Nielsen,et al.  Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics* , 2013, Molecular & Cellular Proteomics.

[134]  J. Levin,et al.  Chemoproteomic discovery of cysteine-containing human short open reading frames. , 2013, Journal of the American Chemical Society.

[135]  K. Gevaert,et al.  Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and Near-cognate Translation Initiation Events* , 2013, Molecular & Cellular Proteomics.

[136]  J. Rinn,et al.  Peptidomic discovery of short open reading frame-encoded peptides in human cells , 2012, Nature chemical biology.

[137]  K. Huse,et al.  Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting , 2012, Genome research.

[138]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[139]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[140]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[141]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[142]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[143]  V. Mootha,et al.  Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans , 2009, Proceedings of the National Academy of Sciences.

[144]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[145]  Sumio Sugano,et al.  Diversity of Translation Start Sites May Define Increased Complexity of the Human Short ORFeome*S , 2007, Molecular & Cellular Proteomics.

[146]  J. Yewdell,et al.  Making sense of mass destruction: quantitating MHC class I antigen presentation , 2003, Nature Reviews Immunology.

[147]  J. Yewdell Hide and Seek in the Peptidome , 2003, Science.

[148]  S. Stacey,et al.  Leaky Scanning Is the Predominant Mechanism for Translation of Human Papillomavirus Type 16 E7 Oncoprotein from E6/E7 Bicistronic mRNA , 2000, Journal of Virology.

[149]  A. Jauch,et al.  Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). , 2000, Blood.

[150]  C. Figdor,et al.  Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL. , 1997, Journal of immunology.

[151]  R. Eisenman,et al.  Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein. , 1994, Molecular biology of the cell.

[152]  J. Lélias,et al.  High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[153]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[154]  OUP accepted manuscript , 2021, Briefings in Bioinformatics.

[155]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..