Attentive Monitoring of Multiple Video Streams Driven by a Bayesian Foraging Strategy

In this paper, we shall consider the problem of deploying attention to the subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multistream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g., activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Data Set, a publicly available data set, are presented to illustrate the utility of the proposed technique.

[1]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[2]  Bin Zhao,et al.  Quasi Real-Time Summarization for Consumer Videos , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Mohan S. Kankanhalli,et al.  Experiential Sampling in Multimedia Systems , 2006, IEEE Transactions on Multimedia.

[4]  Jeremy M Wolfe,et al.  When is it time to move to the next raspberry bush? Foraging rules in human visual search. , 2013, Journal of vision.

[5]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Joaquín M. Fuster,et al.  Cortex and Memory: Emergence of a New Paradigm , 2009, Journal of Cognitive Neuroscience.

[7]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[8]  Amit K. Roy-Chowdhury,et al.  Collaborative Sensing in a Distributed PTZ Camera Network , 2012, IEEE Transactions on Image Processing.

[10]  P. Killeen,et al.  Bayesian analysis of foraging by pigeons (Columba livia). , 1996, Journal of experimental psychology. Animal behavior processes.

[11]  Francesco Tisato,et al.  An attentive multi-camera system , 2014, Electronic Imaging.

[12]  Jiebo Luo,et al.  Towards Scalable Summarization of Consumer Videos Via Sparse Dictionary Selection , 2012, IEEE Transactions on Multimedia.

[13]  Giuseppe Boccignone,et al.  Ecological Sampling of Gaze Shifts , 2014, IEEE Transactions on Cybernetics.

[14]  Carlo S. Regazzoni,et al.  Selective attention automatic focus for cognitive crowd monitoring , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[15]  Paola Campadelli,et al.  Boosted Tracking in Video , 2010, IEEE Signal Processing Letters.

[16]  T. Poggio,et al.  What and where: A Bayesian inference theory of attention , 2010, Vision Research.

[17]  Xiaogang Wang,et al.  Intelligent multi-camera video surveillance: A review , 2013, Pattern Recognit. Lett..

[18]  Sung Wook Baik,et al.  Efficient visual attention based framework for extracting key frames from videos , 2013, Signal Process. Image Commun..

[19]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[20]  Alexander C. Schütz,et al.  Eye movements and perception: a selective review. , 2011, Journal of vision.

[21]  Yong Jae Lee,et al.  Discovering important people and objects for egocentric video summarization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  B. S. Manjunath,et al.  Multicamera video summarization and anomaly detection from activity motifs , 2014, TOSN.

[23]  Demetri Terzopoulos,et al.  Smart Camera Networks in Virtual Reality , 2007, Proceedings of the IEEE.

[24]  Bir Bhanu,et al.  VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication , 2011 .

[25]  Paolo Napoletano,et al.  Bayesian Integration of Face and Low-Level Cues for Foveated Video Coding , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Thomas Martinetz,et al.  Variability of eye movements when viewing dynamic natural scenes. , 2010, Journal of vision.

[27]  Mohan S. Kankanhalli,et al.  Experiential Sampling on Multiple Data Streams , 2006, IEEE Transactions on Multimedia.

[28]  Rita Cucchiara,et al.  Mobile Video Surveillance Systems: An Architectural Overview , 2008, WMMP.

[29]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[30]  Per Lundberg,et al.  Functional response of optimally foraging herbivores , 1990 .

[31]  Ahmed Tashrif Kamal,et al.  An Overview of Distributed Tracking and Control in Camera Networks , 2014 .

[32]  J. Fuster Upper processing stages of the perception–action cycle , 2004, Trends in Cognitive Sciences.

[33]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[34]  Andrea F. Cattoni,et al.  Interaction Modeling and Prediction in Smart Spaces: A Bio-Inspired Approach Based on Autobiographical Memory , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[35]  Bernhard Rinner,et al.  Video Analysis in Pan-Tilt-Zoom Camera Networks , 2010, IEEE Signal Processing Magazine.

[36]  Chia-han Lee,et al.  On-Line Multi-View Video Summarization for Wireless Video Sensor Network , 2015, IEEE Journal of Selected Topics in Signal Processing.

[37]  Simon Haykin,et al.  On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other , 2014, Proceedings of the IEEE.

[38]  C. Bernstein,et al.  Information Acquisition, Information Processing, and Patch Time Allocation in Insect Parasitoids , 2008 .

[39]  Ola Olsson,et al.  Bayes' theorem and its applications in animal behaviour , 2006 .

[40]  Rolf Landauer,et al.  A simple measure of complexity , 1988, Nature.

[41]  Eric Sommerlade,et al.  Probabilistic surveillance with multiple active cameras , 2010, 2010 IEEE International Conference on Robotics and Automation.

[42]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[43]  René Vidal,et al.  Distributed Computer Vision Algorithms , 2011, IEEE Signal Processing Magazine.

[44]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[45]  Shaogang Gong,et al.  Beyond Tracking: Modelling Activity and Understanding Behaviour , 2006, International Journal of Computer Vision.

[46]  Carlo S. Regazzoni,et al.  Event Based Switched Dynamic Bayesian Networks for Autonomous Cognitive Crowd Monitoring , 2014 .

[47]  Daniela Micucci,et al.  Grounding ecologies on multiple spaces , 2012, Pervasive Mob. Comput..

[48]  Nicholas J. Butko,et al.  Active perception , 2010 .

[49]  Charles Spence Crossmodal attention , 1998, Scholarpedia.

[50]  Bernhard Rinner,et al.  Resource-Aware Coverage and Task Assignment in Visual Sensor Networks , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[51]  Carlo S. Regazzoni,et al.  Bio-inspired relevant interaction modelling in cognitive crowd management , 2015, J. Ambient Intell. Humaniz. Comput..

[52]  Yiming Li,et al.  Utility-Based Camera Assignment in a Video Network: A Game Theoretic Framework , 2011, IEEE Sensors Journal.

[53]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[54]  Amit K. Roy-Chowdhury,et al.  Distributed Constrained Optimization for Bayesian Opportunistic Visual Sensing , 2014, IEEE Transactions on Control Systems Technology.

[55]  Gian Luca Foresti,et al.  Saliency Weighted Features for Person Re-identification , 2014, ECCV Workshops.

[56]  Josep Lladós,et al.  Modelling Task-Dependent Eye Guidance to Objects in Pictures , 2014, Cognitive Computation.

[57]  Yunqian Ma,et al.  Imbalanced Learning: Foundations, Algorithms, and Applications , 2013 .

[58]  Xin Yao,et al.  Socio-economic vision graph generation and handover in distributed smart camera networks , 2014, TOSN.

[59]  Antonio Torralba,et al.  Modeling global scene factors in attention. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  J. Waage,et al.  Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens , 1979 .

[61]  Ronald A. Rensink The Dynamic Representation of Scenes , 2000 .

[62]  Thomas T. Hills Animal Foraging and the Evolution of Goal-Directed Cognition , 2006, Cogn. Sci..