A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model

We propose an extension of Gaussian mixture models in the statistical-mechanical point of view. The conventional Gaussian mixture models are formulated to divide all points in given data to some kinds of classes. We introduce some quantum states constructed by superposing conventional classes in linear combinations. Our extension can provide a new algorithm in classifications of data by means of linear response formulas in the statistical mechanics.

[1]  Shun-ichi Amari,et al.  Stochastic Reasoning, Free Energy, and Information Geometry , 2004, Neural Computation.

[2]  Masato Okada,et al.  Residual Energies after Slow Quantum Annealing , 2005 .

[3]  Naonori Ueda,et al.  Deterministic annealing EM algorithm , 1998, Neural Networks.

[4]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[5]  Error Counting in a Quantum Error-correcting Code and the Ground-State Energy of a Spin Glass , 2004, cond-mat/0405313.

[6]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[7]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[8]  Kazuyuki Tanaka Statistical-mechanical approach to image processing , 2002 .

[9]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[10]  Hidetoshi Nishimori,et al.  Convergence theorems for quantum annealing , 2006, quant-ph/0608154.

[11]  Alessandro Pelizzola,et al.  Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models , 2005, ArXiv.

[12]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[13]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[14]  Denshi Jōhō Tsūshin Gakkai Electronics and communications in Japan. Part 3, Fundamental electronic science , 1989 .

[15]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[16]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[17]  T. Morita Cluster Variation Method of Cooperative Phenomena and its Generalization II. Quantum Statistics , 1957 .

[18]  Koujin Takeda,et al.  Self-dual random-plaquette gauge model and the quantum toric code , 2003, hep-th/0310279.

[19]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[20]  Quantum annealing of the random-field Ising model by transverse ferromagnetic interactions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[22]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[23]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.