IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts

[1]  F. Karush,et al.  Restriction in IgM expression--I. The VH regions of equine anti-lactose antibodies. , 1980, Molecular immunology.

[2]  C. Coleclough,et al.  CH gene rearrangements in IgM-bearing B cells and in the normal splenic DNA component of hybridomas making different isotypes of antibody , 1980, Cell.

[3]  M. Potter Inbred strains in biomedical research By M.F.W. Festing. New York: Oxford University Press. (1979). 483 pp. $46.50 , 1980, Cell.

[4]  Hitoshi Sakano,et al.  Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes , 1980, Nature.

[5]  C. Berek,et al.  Phosphorylcholine‐binding hybridoma proteins of normal and idiotypically suppressed BALB/c mice. II. Variable region N‐terminal amino acid sequences , 1980, European journal of immunology.

[6]  L. Hood,et al.  An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH , 1980, Cell.

[7]  A. Nisonoff,et al.  Structural studies on induced antibodies with defined idiotypic specificities. IX. Framework differences in the heavy- and light-chain- variable regions of monoclonal anti-p-azophenylarsonate antibodies from A/J mice differing with respect to a cross-reactive idiotype , 1980, The Journal of experimental medicine.

[8]  Mark M. Davis,et al.  An immunoglobulin heavy-chain gene is formed by at least two recombinational events , 1980, Nature.

[9]  L. Hood,et al.  Organization of kappa light chain genes in germ-line and somatic tissue. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Siekevitz,et al.  Hybridoma proteins expressing the predominant idiotype of the antiazophenylarsonate response of A/J mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Honjo,et al.  Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Hood,et al.  Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangments in heavy chain V-region gene segments , 1980, Nature.

[13]  L. Hood,et al.  Analysis of phenylthiohydantoin amino acids by high-performance liquid chromatography on DuPont Zobax cyanopropylsilane columns. , 1979, Analytical biochemistry.

[14]  K. Bottomly,et al.  Mice whose B cells cannot produce the T15 idiotype also lack an antigen- specific helper T cell required for T15 expression , 1979, The Journal of experimental medicine.

[15]  Hitoshi Sakano,et al.  Sequences at the somatic recombination sites of immunoglobulin light-chain genes , 1979, Nature.

[16]  J. Seidman,et al.  Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Hood,et al.  Immunoglobulin heavy chain gene organization in mice: analysis of a myeloma genomic clone containing variable and alpha constant regions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Cebra,et al.  Differentiated B lymphocytes. Potential to express particular antibody variable and constant regions depends on site of lymphoid tissue and antigen load , 1979, The Journal of experimental medicine.

[19]  Mark M. Davis,et al.  THE ORGANIZATION AND REARRANGEMENT OF HEAVY CHAIN IMMUNOGLOBULIN GENES IN MICE , 1979 .

[20]  S. Tonegawa,et al.  Sequences of mouse immunoglobulin light chain genes before and after somatic changes , 1978, Cell.

[21]  L. Hood,et al.  Rearrangement of genetic information may produce immunoglobulin diversity , 1978, Nature.

[22]  G. Köhler,et al.  A better cell line for making hybridomas secreting specific antibodies , 1978, Nature.

[23]  Susumu Tonegawa,et al.  A complete immunoglobulin gene is created by somatic recombination , 1978, Cell.

[24]  S. Rudikoff,et al.  kappa Chain variable region from M167, a phosphorylcholine binding myeloma protein. , 1978, Biochemistry.

[25]  L. Hood,et al.  Immunoglobulins with hapten‐binding activity: structure‐function correlations and genetic implications , 1978, European journal of immunology.

[26]  K. Rajewsky,et al.  Analysis of the repertoire of anti‐NP antibodies in C57BL/6 mice by cell fusion. I. Characterization of antibody families in the primary and hyperimmune response , 1978, European journal of immunology.

[27]  L. Hood,et al.  Direct microsequence analysis of polypeptides using an improved sequenator, a nonprotein carrier (polybrene), and high pressure liquid chromatography. , 1978, Biochemistry.

[28]  P. Gearhart,et al.  Idiotype sharing by murine strains differing in immunoglobulin allotype , 1978, Nature.

[29]  S. Tonegawa,et al.  Somatic changes in the content and context of immunoglobulin genes. , 1977, Cold Spring Harbor symposia on quantitative biology.

[30]  L. Hood,et al.  The structure and genetics of mouse immunoglobulins: an analysis of NZB myeloma proteins and sets of BALB/c myeloma proteins binding particular haptens. , 1977, Cold Spring Harbor symposia on quantitative biology.

[31]  M. Weigert,et al.  Genetic control of antibody variable regions. , 1977, Cold Spring Harbor symposia on quantitative biology.

[32]  S. Rudikoff,et al.  Expression of equivalent clonotypes in BALB/c and A/J mice after immunization with phosphorylcholine , 1976, The Journal of experimental medicine.

[33]  J. Claflin Uniformity in the clonal repertoire for the immune response to phosphorylcholine in mice , 1976, European journal of immunology.

[34]  S. Rudikoff,et al.  Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Raff,et al.  Early production of intracellular IgM by B-lymphocyte precursors in mouse , 1976, Nature.

[36]  H. Köhler,et al.  Immune response to phosphorylcholine. I. Characterization of the epitope‐specific antibody , 1975, European journal of immunology.

[37]  N. Sigal,et al.  Late acquisition of a germ line antibody specificity , 1976, Nature.

[38]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[39]  N H Sigal,et al.  Heterogeneity of the BALB/c antiphosphorylcholine antibody response at the precursor cell level , 1975, The Journal of experimental medicine.

[40]  J. Klein Biology of the Mouse Histocompatibility-2 Complex , 1975, Springer Berlin Heidelberg.

[41]  D. Strayer,et al.  Neonatal Tolerance Induced by Antibody against Antigen-Specific Receptor , 1974, Science.

[42]  J. Cebra,et al.  Specificity of Antibodies: Primary Structural Basis of Hapten Binding , 1974, Science.

[43]  S. Rudikoff,et al.  Variable region sequence of the heavy chain from a phosphorylcholine binding myeloma protein. , 1974, Biochemistry.

[44]  L M Amzel,et al.  The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Lieberman,et al.  GENETICS OF A NEW IgVH (T15 IDIOTYPE) MARKER IN THE MOUSE REGULATING NATURAL ANTIBODY TO PHOSPHORYLCHOLINE , 1974, The Journal of experimental medicine.

[46]  D. Baltimore Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? , 1974, Nature.

[47]  L. Hood,et al.  Imunoglobulin Structure: Amino Terminal Sequences of Mouse Myeloma Proteins That Bind Phosphorylcholine , 1974, Science.

[48]  J. Kehoe,et al.  Variable region sequences of five human immunoglobulin heavy chains of the VH3 subgroup: definitive identification of four heavy chain hypervariable regions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Martin Weigert,et al.  FIRST ORDER CONSIDERATIONS IN ANALYZING THE GENERATOR OF DIVERSITY , 1974 .

[50]  E. Padlan,et al.  Structure at 4.5 A resolution of a phosphorylcholine-binding fab. , 1973, Nature: New biology.

[51]  M Cohn,et al.  Inheritance of an idiotype associated with the immune response of inbred mice to phosphorylcholine , 1972, European journal of immunology.

[52]  Humberto Cosenza,et al.  Specific Inhibition of Plaque Formation to Phosphorylcholine by Antibody against Antibody , 1972, Science.

[53]  B. Chesebro,et al.  Affinity labeling of a phosphorylcholine binding mouse myeloma protein. , 1972, Biochemistry.

[54]  G M Edelman,et al.  The genetic control of immunoglobulin synthesis. , 1972, Annual review of genetics.

[55]  M. Potter,et al.  Antigen-binding myeloma proteins in mice. , 1971, Annals of the New York Academy of Sciences.

[56]  T. T. Wu,et al.  AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY , 1970, The Journal of experimental medicine.

[57]  C. Milstein,et al.  Linked Groups of Residues in Immunoglobulin κ Chains , 1967, Nature.

[58]  L. Hood,et al.  Light Chain Evolution , 1967 .

[59]  S. Brenner,et al.  Origin of Antibody Variation , 1966, Nature.

[60]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[61]  F. Karush,et al.  Immunologic Specificity and Molecular Structure1 , 1963 .

[62]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .