The period of the Bell numbers modulo a prime

We discuss the numbers in the title, and in particular whether the minimum period of the Bell numbers modulo a prime p can be a proper divisor of Np = (p P — 1)/(p - 1). It is known that the period always divides Np. The period is shown to equal Np for most primes p below 180. The investigation leads to interesting new results about the possible prime factors of Np. For example, we show that if p is an odd positive integer and m is a positive integer and q = 4m 2 p + 1 is prime, then q divides p m2p - 1. Then we explain how this theorem influences the probability that q divides Np.

[1]  Luis H. Gallardo,et al.  ABOUT THE PERIOD OF BELL NUMBERS MODULO A PRIME , 2008 .

[2]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[3]  Richard P. Brent,et al.  On computing factors of cyclotomic polynomials , 1993, ArXiv.

[4]  H. Riesel Prime numbers and computer methods for factorization , 1985 .

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  R. D. Carmichael,et al.  History of the Theory of Numbers, Volume I: Divisibility and Primality , 2012 .

[7]  E. Cesàro Sur une équation aux différences mêlées , 1885 .

[8]  Juan Sabia,et al.  The Least Prime in Certain Arithmetic Progressions , 2009, Am. Math. Mon..

[9]  P. A. B. Pleasants,et al.  Arithmetic properties of Bell numbers to a composite modulus I , 1979 .

[10]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[11]  R. Horn,et al.  A heuristic asymptotic formula concerning the distribution of prime numbers , 1962 .

[12]  Samuel S. Wagstaff,et al.  Aurifeuillian factorizations and the period of the Bell numbers modulo a prime , 1996, Mathematics of Computation.

[13]  Jack Levine,et al.  Minimum periods, modulo $p$, of first-order Bell exponential integers. , 1962 .

[14]  A. Schinzel,et al.  On Primitive Prime Factors of an-bn , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  W. B. Campbell,et al.  Numbers Generated by the Function e e x-1 , 1945 .

[16]  S. Wagstaff Divisors of Mersenne numbers , 1983 .