Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA

We calculate evapotranspiration (E) from remote sensing (RS) data using the Penman–Monteith model over continental USA for four years (2003–2006) and explore, through an ensemble generation framework, the impact of input dataset (meteorological, radiation and vegetation) selection on performance (uncertainty) at the monthly time-scale. The impact of failed or missed RS retrievals and algorithmic assumptions are also quantified. To evaluate bias, we inter-compare RS-E with three independent sources of E: Variable Infiltration Capacity (VIC)-model simulated, North American Regional Reanalysis (NARR) inferred, and Gravity Recovery and Climate Experiment (GRACE) inferred. Overall, we find that the choice of vegetation parameterization, followed by surface temperature, has the greatest impact on RS-E uncertainty. Additional uncertainty (4–18%) is linked to sources of net radiation—used to scale instantaneous RS-E under the assumption of constant daytime evaporative fraction—including the Surface Radiation Budget (SRB), International Satellite Cloud Climatology Project (ISCCP), and North American Land Data Assimilation System (NLDAS)-VIC. The ensemble median agrees to within 21% of VIC-modelled E, except for the Colorado and Great Basins for which the need for a soil moisture constraint on RS-E becomes evident.

[1]  Phillip A. Arkin,et al.  An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data , 2009 .

[2]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[3]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[4]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[5]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[6]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[7]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[8]  Rachel T. Pinker,et al.  Evaluation of Satellite Estimates of Land Surface Temperature from GOES over the United States , 2009 .

[9]  Paul W. Stackhouse,et al.  Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near‐surface atmosphere , 2006 .

[10]  Wilfried Brutsaert,et al.  Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio , 1996 .

[11]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[12]  William E. Nichols,et al.  Evaluation of the evaporative fraction for parameterization of the surface energy balance , 1993 .

[13]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[14]  W. L. Darnell,et al.  A parameterization for longwave surface radiation from satellite data - Recent improvements , 1992 .

[15]  Robert E. Wolfe,et al.  An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series , 2008, IEEE Geoscience and Remote Sensing Letters.

[16]  Craig S. T. Daughtry,et al.  Estimation of the soil heat flux/net radiation ratio from spectral data , 1990 .

[17]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[18]  Eric F. Wood,et al.  An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder* , 2010 .

[19]  E. Wood,et al.  Data Assimilation for Estimating the Terrestrial Water Budget Using a Constrained Ensemble Kalman Filter , 2006 .

[20]  Matthew F. McCabe,et al.  Evaluation of Remotely Sensed Evapotranspiration Over the CEOP EOP-1 Reference Sites , 2007 .

[21]  D. Deaven,et al.  Changes to the Operational ''Early'' Eta Analysis / Forecast System at the National Centers for Environmental Prediction , 1996 .

[22]  Z. Wan New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products , 2008 .

[23]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[24]  Qiuhong Tang,et al.  Estimating the water budget of major US river basins via remote sensing , 2010 .

[25]  Chong-Yu Xu,et al.  Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin , 2006 .

[26]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[27]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[28]  M. Mccabe,et al.  Closing the terrestrial water budget from satellite remote sensing , 2009 .

[29]  D. Gutzler Covariability of Spring Snowpack and Summer Rainfall across the Southwest United States , 2000 .

[30]  S. Ganguly,et al.  Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory , 2008 .

[31]  Amélie Rajaud,et al.  A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[32]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[33]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[34]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[35]  S. Goetz,et al.  Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005 , 2008 .

[36]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[37]  Gabriel G. Katul,et al.  Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes , 2009 .

[38]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[39]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[40]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[41]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[42]  Ü. Rannik,et al.  Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology , 2000 .

[43]  Witold F. Krajewski,et al.  New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3‐hourly estimates over Oklahoma , 2009 .

[44]  Lifeng Luo,et al.  Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System Project , 2004 .

[45]  Nancy A. Ritchey,et al.  Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data , 1992 .

[46]  M. Friedl,et al.  Diurnal Covariation in Soil Heat Flux and Net Radiation , 2003 .

[47]  Erich Franz Stocker,et al.  Analysis of TRMM 3-Hourly Multi-Satellite Precipitation Estimates Computed in Both Real and Post-Real Time , 2002 .

[48]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[49]  Kuolin Hsu,et al.  Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation , 1999 .

[50]  Shashi,et al.  The Langley Parameterized Shortwave Algorithm ( LPSA ) for Surface Radiation Budget Studies Version 1 . 0 , 2022 .

[51]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[52]  Eric F. Wood,et al.  An efficient calibration method for continental‐scale land surface modeling , 2008 .

[53]  R. DeFries,et al.  Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling , 2000 .

[54]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[55]  Tomoo Ushio,et al.  Evaluation of GSMaP Precipitation Estimates over the Contiguous United States , 2010 .

[56]  Wilfried Brutsaert,et al.  Daily evaporation over a region from lower boundary layer profiles measured with radiosondes , 1991 .

[57]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[58]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[59]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[60]  J. D. Tarpley,et al.  Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[61]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[62]  C. W. Thornthwaite An approach toward a rational classification of climate. , 1948 .

[63]  William P. Kustas,et al.  Effect of remote sensing spatial resolution on interpreting tower-based flux observations , 2006 .

[64]  Dawen Yang,et al.  Analyzing spatial and temporal variability of annual water‐energy balance in nonhumid regions of China using the Budyko hypothesis , 2007 .

[65]  D. Lettenmaier,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States* , 2002 .

[66]  J. D. Tarpley,et al.  Surface radiation budgets in support of the GEWEX Continental‐Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project , 2003 .

[67]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[68]  M. Budyko,et al.  Climate and life , 1975 .

[69]  Paul W. Stackhouse,et al.  Comparison of Different Global Information Sources Used in Surface Radiative Flux Calculation: Radiative Properties of the Surface , 2007 .

[70]  William P. Kustas,et al.  An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere , 2001 .

[71]  D. Lettenmaier,et al.  Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification , 1996 .

[72]  D. Lettenmaier,et al.  Satellite‐based near‐real‐time estimation of irrigated crop water consumption , 2009 .

[73]  Alan K. Betts,et al.  Land‐Surface‐Atmosphere Coupling in Observations and Models , 2009 .

[74]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[75]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[76]  C. Anne,et al.  Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation , 1999 .

[77]  E. Frempong Diel aspects of the thermal structure and energy budget of a small English lake , 1983 .

[78]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[79]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[80]  Pamela L. Nagler,et al.  Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration , 2007 .

[81]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[82]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[83]  W. Oechel,et al.  Energy balance closure at FLUXNET sites , 2002 .

[84]  M. Wigmosta,et al.  A distributed hydrology-vegetation model for complex terrain , 1994 .

[85]  Dirk Pflugmacher,et al.  Numerical Terradynamic Simulation Group 7-2006 MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere , 2018 .

[86]  A. Holtslag,et al.  Towards Closing the Surface Energy Budget of a Mid-latitude Grassland , 2007 .

[87]  Keith Beven,et al.  A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates , 1979 .

[88]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[89]  Fabio Castelli,et al.  Mutual interaction of soil moisture state and atmospheric processes , 1996 .

[90]  Dennis P. Lettenmaier,et al.  Tracking Fresh Water from Space , 2003, Science.

[91]  Lifeng Luo,et al.  Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model‐simulated snow cover extent , 2003 .

[92]  Eric Elguero,et al.  Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model , 1999 .

[93]  Dawen Yang,et al.  Interpreting the complementary relationship in non‐humid environments based on the Budyko and Penman hypotheses , 2006 .

[94]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[95]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[96]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[97]  W. J. Steenburgh,et al.  Spurious Grid-Scale Precipitation in the North American Regional Reanalysis , 2007 .

[98]  W. J. Shuttleworth,et al.  Hydrometeorological Response of the Modeled North American Monsoon to Convective Parameterization , 2003 .

[99]  X. Lee,et al.  Overview of ChinaFLUX and evaluation of its eddy covariance measurement , 2006 .

[100]  S. Ganguly,et al.  Author ' s personal copy Generating vegetation leaf area index Earth system data record from multiple sensors . Part 2 : Implementation , analysis and validation , 2008 .

[101]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[102]  Lifeng Luo,et al.  Snow process modeling in the north american Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[103]  Paul W. Stackhouse,et al.  The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0 , 2001 .

[104]  J. D. Tarpley,et al.  Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season , 2003 .

[105]  Samuel N. Goward,et al.  Simulated Relationships Between Spectral Reflectance, Thermal Emissions, and Evapotranspiration of a Soybean Canopy , 1986 .

[106]  Donglian Sun,et al.  Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8) , 2003 .

[107]  P. Ineichen,et al.  A NEW OPERATIONAL SATELLITE-TO-IRRADIANCE MODEL - DESCRIPTION AND VALIDATION , 2002 .

[108]  Maria Stella Chiacchio,et al.  The WCRP/GEWEX Surface Radiation Budget Project Release 2: An Assessment of Surface Fluxes at 1 Degree Resolution , 2000 .

[109]  Eric F. Wood,et al.  Assessing the skill of satellite‐based precipitation estimates in hydrologic applications , 2010 .

[110]  Dara Entekhabi,et al.  Analysis of evaporative fraction diurnal behaviour , 2007 .

[111]  A. Miyata,et al.  A review of tower flux observation sites in Asia , 2009, Journal of Forest Research.

[112]  D. Hall,et al.  Accuracy assessment of the MODIS snow products , 2007 .

[113]  Martha C. Anderson,et al.  A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales , 2008 .

[114]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[115]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[116]  Crystal B. Schaaf,et al.  Development and assessment of broadband surface albedo from Clouds and the Earth's Radiant Energy System Clouds and Radiation Swath data product , 2009 .