A <inline-formula> <tex-math notation="LaTeX">$(t, s, v)$ </tex-math></inline-formula>-all-or-nothing transform (AONT) is a bijective mapping defined on <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>-tuples over an alphabet of size <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula>, which satisfies the condition that the values of any <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> input co-ordinates are completely undetermined, given only the values of any <inline-formula> <tex-math notation="LaTeX">$s-t$ </tex-math></inline-formula> output co-ordinates. The main question we address in this paper is: for which choices of parameters does a <inline-formula> <tex-math notation="LaTeX">$(t, s, v)$ </tex-math></inline-formula>-AONT exist? More specifically, if we fix <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula>, we want to determine the maximum integer <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula> such that a <inline-formula> <tex-math notation="LaTeX">$(t, s, v)$ </tex-math></inline-formula>-AONT exists. We mainly concentrate on the case <inline-formula> <tex-math notation="LaTeX">$t=2$ </tex-math></inline-formula> for arbitrary values of <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula>, where we obtain various necessary as well as sufficient conditions for existence of these objects. This includes computer searches that establish the existence of <inline-formula> <tex-math notation="LaTeX">$(2, q, q)$ </tex-math></inline-formula>-AONT for all odd primes not exceeding 29. We also show some connections between AONT, orthogonal arrays, and resilient functions.
[1]
O. Antoine,et al.
Theory of Error-correcting Codes
,
2022
.
[2]
Thomas Siegenthaler,et al.
Correlation-immunity of nonlinear combining functions for cryptographic applications
,
1984,
IEEE Trans. Inf. Theory.
[3]
Tao Zhang,et al.
Invertible binary matrices with maximum number of 2-by-2 invertible submatrices
,
2017,
Discret. Math..
[4]
Douglas R. Stinson,et al.
All or Nothing at All
,
2016,
Electron. J. Comb..
[5]
Douglas R. Stinson,et al.
An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions
,
2004,
Journal of Cryptology.
[6]
D. Stinson,et al.
Resilient functions and large sets of orthogonal arrays
,
2022
.
[7]
Eyal Kushilevitz,et al.
Exposure-Resilient Functions and All-or-Nothing Transforms
,
2000,
EUROCRYPT.
[8]
Douglas R. Stinson,et al.
Computational results on invertible matrices with the maximum number of invertible 2×2 submatrices
,
2017,
Australas. J Comb..
[9]
Douglas R. Stinson,et al.
Something About All or Nothing (Transforms)
,
2001,
Des. Codes Cryptogr..
[10]
Douglas R. Stinson,et al.
Three characterizations of non-binary correlation-immune and resilient functions
,
1995,
Des. Codes Cryptogr..
[11]
Amit Sahai,et al.
On Perfect and Adaptive Security in Exposure-Resilient Cryptography
,
2001,
EUROCRYPT.
[12]
Ronald L. Rivest,et al.
All-or-Nothing Encryption and the Package Transform
,
1997,
FSE.