Strategies for crystallization and structure determination of very large macromolecular assemblies.

High-resolution structures of macromolecular assemblies are pivotal for our understanding of their biological functions in fundamental cellular processes. In the field of X-ray crystallography, recent methodological and instrumental advances have led to the structure determinations of macromolecular assemblies of increased size and complexity, such as those of ribosomal complexes, RNA polymerases, and large multifunctional enzymes. These advances include the use of robotic screening techniques that maximize the chances of obtaining well-diffracting crystals of large complexes through the fine sampling of crystallization space. Sophisticated crystal optimization and cryoprotection techniques and the use of highly brilliant X-ray beams from third-generation synchrotron light sources now allow data collection from weakly diffracting crystals with large asymmetric units. Combined approaches are used to derive phase information, including phases calculated from electron microscopy (EM) models, heavy atom clusters, and density modification protocols. New crystallographic software tools prove valuable for structure determination and model refinement of large macromolecular complexes.

[1]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[2]  T. Earnest,et al.  Single-wavelength anomalous diffraction phasing revisited. , 2000, Acta crystallographica. Section D, Biological crystallography.

[3]  Timm Maier,et al.  Architecture of a Fungal Fatty Acid Synthase at 5 Å Resolution , 2006, Science.

[4]  E. Garman,et al.  Radioprotectant screening for cryocrystallography. , 2007, Journal of synchrotron radiation.

[5]  Jennifer L. Martin,et al.  Post-crystallization treatments for improving diffraction quality of protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[6]  N. Ban,et al.  Structural Basis for Substrate Delivery by Acyl Carrier Protein in the Yeast Fatty Acid Synthase , 2007, Science.

[7]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[8]  Nicholas Furnham,et al.  Knowledge-based real-space explorations for low-resolution structure determination. , 2006, Structure.

[9]  Paul D. Adams,et al.  A robust bulk-solvent correction and anisotropic scaling procedure , 2005, Acta crystallographica. Section D, Biological crystallography.

[10]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[11]  J. Abrahams,et al.  X-ray crystallographic structure determination of large asymmetric macromolecular assemblies. , 2003, Methods in enzymology.

[12]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[13]  Z. Dauter Use of polynuclear metal clusters in protein crystallography , 2005 .

[14]  A. Leslie,et al.  Crystallization and preliminary crystallographic studies of the mitochondrial F1-ATPase from the yeast Saccharomyces cerevisiae. , 2004, Acta crystallographica. Section D, Biological crystallography.

[15]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[16]  Timm Maier,et al.  Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution , 2006, Science.

[17]  P. Cramer,et al.  Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. , 2001, Structure.

[18]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[19]  Ana González,et al.  Optimizing data collection for structure determination. , 2003, Acta crystallographica. Section D, Biological crystallography.

[20]  Jamie H. D. Cate,et al.  Structural basis for mRNA and tRNA positioning on the ribosome , 2006, Proceedings of the National Academy of Sciences.

[21]  Piet Gros,et al.  Structure of C3b reveals conformational changes that underlie complement activity , 2006, Nature.

[22]  J. McCutcheon,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. , 2001, Journal of molecular biology.

[23]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[24]  Daniel Boehringer,et al.  Structure of Fungal Fatty Acid Synthase and Implications for Iterative Substrate Shuttling , 2007, Science.

[25]  M. Yusupov,et al.  Bulk-solvent correction in large macromolecular structures. , 2005, Acta crystallographica. Section D, Biological crystallography.

[26]  R. Ravelli,et al.  Phasing in the presence of radiation damage , 2005 .

[27]  S. Kriminski,et al.  Flash-cooling and annealing of protein crystals. , 2002, Acta crystallographica. Section D, Biological crystallography.

[28]  Elspeth Garman,et al.  'Cool' crystals: macromolecular cryocrystallography and radiation damage. , 2003, Current opinion in structural biology.

[29]  Pavel Strop,et al.  Crystal Structure of Escherichia coli MscS, a Voltage-Modulated and Mechanosensitive Channel , 2002, Science.

[30]  J. Abrahams,et al.  Inherent asymmetry of the structure of F1‐ATPase from bovine heart mitochondria at 6.5 A resolution. , 1993, The EMBO journal.

[31]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[32]  T. Richmond,et al.  X-ray structure of a tetranucleosome and its implications for the chromatin fibre , 2005, Nature.

[33]  Chu-Young Kim,et al.  The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase , 2006 .

[34]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[35]  Airlie J. McCoy,et al.  Solving structures of protein complexes by molecular replacement with Phaser , 2006, Acta crystallographica. Section D, Biological crystallography.

[36]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[37]  Axel T Brunger,et al.  Low-resolution crystallography is coming of age. , 2005, Structure.

[38]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[39]  Brian W Matthews,et al.  Five retracted structure reports: Inverted or incorrect? , 2007, Protein science : a publication of the Protein Society.

[40]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[41]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[42]  T. Steitz,et al.  The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together , 2007, Cell.

[43]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[44]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[45]  M. Rossmann,et al.  Ab initio phase determination and phase extension using non-crystallographic symmetry. , 1995, Current opinion in structural biology.

[46]  Z Dauter,et al.  Data-collection strategies. , 1999, Acta crystallographica. Section D, Biological crystallography.

[47]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[48]  M. Weiss,et al.  How to avoid premature decay of your macromolecular crystal: a quick soak for long life. , 2006, Structure.

[49]  W. Chiu,et al.  Structural biology of viruses , 1997 .