Cast Shadow Detection to Quantify the Aerosol Optical Thickness for Atmospheric Correction of High Spatial Resolution Optical Imagery

The atmospheric correction of optical remote sensing data requires the determination of aerosol and gas optical properties. A method is presented which allows the detection of the aerosol scattering effects from optical remote sensing data at spatial sampling intervals below 5 m in cloud-free situations from cast shadow pixels. The derived aerosol optical thickness distribution is used for improved atmospheric compensation. In a first step, a novel spectral cast shadow detection algorithm determines the shadow areas using spectral indices. Evaluation of the cast shadow masks shows an overall classification accuracy on an 80% level. Using the such derived shadow map, the ATCOR atmospheric compensation method is iteratively applied on the shadow areas in order to find the optimum aerosol amount. The aerosol optical thickness is found by analyzing the physical atmospheric correction of fully shaded pixels in comparison to directly illuminated areas. The shadow based aerosol optical thickness estimation method (SHAOT) is tested on airborne imaging spectroscopy data as well as on photogrammetric data. The accuracy of the reflectance values from atmospheric correction using the such derived aerosol optical thickness could be improved from 3–4% to a level of better than 2% in reflectance for the investigated test cases.

[1]  Daniel Schläpfer,et al.  CORRECTION OF SHADOWING IN IMAGING SPECTROSCOPY DATA BY QUANTIFICATION OF THE PROPORTION OF DIFFUSE ILLUMINATION , 2013 .

[2]  K. Itten,et al.  Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) , 2015 .

[3]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[4]  Vassilia Karathanassi,et al.  De-shadowing of airborne imagery using at-sensor downwelling irradiance data , 2014 .

[5]  Yi Luo,et al.  Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America , 2008 .

[6]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[7]  L. Gómez-Chova,et al.  Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land , 2008 .

[8]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[9]  Yoram J. Kaufman,et al.  Satellite sensing of aerosol absorption , 1987 .

[10]  Andreas Hueni,et al.  Airborne Prism Experiment Calibration Information System , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Paul E. Lewis,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Defense + Commercial Sensing.

[12]  Makoto Nagao,et al.  Region extraction and shape analysis in aerial photographs , 1979 .

[13]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[14]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[15]  Stefan Adriaensen,et al.  Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Oleg Dubovik,et al.  GRASP: a versatile algorithm for characterizing the atmosphere , 2014 .

[17]  Aixia Yang,et al.  An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery , 2017, Remote. Sens..

[18]  Ruhul Amin,et al.  Assessing the Application of Cloud–Shadow Atmospheric Correction Algorithm on HICO , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Peng Gong,et al.  Removing shadows from Google Earth images , 2010 .

[20]  X. Briottet,et al.  Shadow detection in very high spatial resolution aerial images: A comparative study , 2013 .

[21]  Zhe Zhu,et al.  Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change , 2014 .

[22]  Daniel Schläpfer,et al.  Atmospheric correction of imaging spectroscopy data using shadow-based quantification of aerosol scattering effects , 2017 .

[23]  Peter Reinartz,et al.  Adaptive Shadow Detection Using a Blackbody Radiator Model , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Victor J. D. Tsai,et al.  A comparative study on shadow compensation of color aerial images in invariant color models , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Sietse O. Los,et al.  A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR , 2012 .

[26]  North F. Larsen,et al.  Use of shadows to retrieve water vapor in hazy atmospheres. , 2005, Applied optics.

[27]  Ruhul Amin,et al.  Optical Algorithm for Cloud Shadow Detection Over Water , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR‐2 radiometer measurements 2. Case study application and validation , 2002 .

[29]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[30]  Daniel Schläpfer,et al.  An automatic atmospheric correction algorithm for visible/NIR imagery , 2006 .

[31]  Hermann Kaufmann,et al.  Automatic shadow detection in hyperspectral VIS-NIR images , 2011 .

[32]  M Schaepman,et al.  Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX. , 2014, Applied optics.

[33]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[34]  P. Deschamps,et al.  Influence of the atmosphere on space measurements of directional properties. , 1983, Applied optics.

[35]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[36]  Daniel Schläpfer,et al.  Operational BRDF Effects Correction for Wide-Field-of-View Optical Scanners (BREFCOR) , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[37]  R. Richter On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets , 1997 .

[38]  Anita Simic Milas,et al.  Different colours of shadows: classification of UAV images , 2017 .

[39]  Sabine Süsstrunk,et al.  Automatic and Accurate Shadow Detection Using Near-Infrared Information , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[41]  Qiang He,et al.  A New Shadow Removal Method for Color Images , 2013 .

[42]  Bodo Bookhagen,et al.  Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[43]  D. Diner,et al.  Atmospheric transmittance from spacecraft using multiple view angle imagery. , 1985, Applied optics.

[44]  Zhangquan Shen,et al.  Review of shadow detection and de-shadowing methods in remote sensing , 2013, Chinese Geographical Science.

[45]  Javier Gonzalez,et al.  Shadow detection in colour high‐resolution satellite images , 2008 .

[46]  B. Leblon,et al.  Effects of shadowing types on ground-measured visible and near-infrared shadow reflectances , 1996 .

[47]  Andreas Hueni,et al.  Field and Airborne Spectroscopy Cross Validation—Some Considerations , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  James A. Gardner,et al.  Algorithm for de-shadowing spectral imagery , 2002, SPIE Optics + Photonics.

[49]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[50]  S. Adler-Golden,et al.  Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN 4 , 2000 .

[51]  Rainer Sandau,et al.  Design Principles of the LH Systems ADS40 Airborne Digital Sensor , 2000 .

[52]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[53]  R. Richter,et al.  De‐shadowing of satellite/airborne imagery , 2005 .

[54]  Xavier Briottet,et al.  Remote sensing of aerosols in urban areas from very high spatial resolution images: application of the OSIS code to multispectral PELICAN airborne data , 2013 .

[55]  C. Borel,et al.  Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations , 1996 .

[56]  J. Hay,et al.  Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies , 1985 .

[57]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[58]  John K. Tsotsos,et al.  Ambient illumination and the determination of material changes. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[59]  K. Carder,et al.  Satellite-sensor calibration verification with the cloud-shadow method. , 1998, Applied optics.

[60]  G. Asner,et al.  Canopy shadow in IKONOS satellite observations of tropical forests and savannas , 2003 .

[61]  Anup K. Prasad,et al.  Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005) , 2007 .