Myocardial scar detected by contrast-enhanced cardiac magnetic resonance imaging is associated with ventricular tachycardia in hypertrophic cardiomyopathy patients.

INTRODUCTION Hypertrophic cardiomyopathy (HCM) is associated with myocardial scarring and ventricular tachycardia (VT). Contrast-enhanced cardiac magnetic resonance imaging (CE-CMR) can quantify myocardial scar, and scar imaging has been documented in patients with HCM. We investigated the assessment of myocardial scar in HCM patients using CE-CMR, and its correlation with proven VT. METHODS Twenty-five patients (mean age 54 +/- 8) with HCM who underwent CE-CMR were identified, and clinical data obtained from chart review. Parameters of LV function were calculated from cine imaging, and myocardial scar was assessed using delayed enhancement imaging following gadolinium administration. RESULTS Myocardial scar was detected in 16 (64%) patients with a mean mass 9 +/- 15 g. Scar was patchy, mid-myocardial and located in the basal anteroseptum, and RV insertion sites. Scar was seen in septal, apical and concentric variants of HCM. Scar mass correlated with both LV Mass (r2 = 0.74) and maximal LV wall thickness (r2 = 0.42). VT occurred in 32% of patients, and was associated with both increased scar mass and wall thickness compared to non-VT patients (21 +/- 22 g vs. 4 +/- 6 g, and 2.4 +/- 0.5 cm vs. 1.8 +/- 0.5 cm, p < 0.05). LV size and function were similar in patients with and without VT. A scar mass of >7 g predicted the presence of VT with a sensitivity of 75% and specificity 82%. CONCLUSIONS Myocardial scar imaged by CE-CMR is common in patients with HCM, and is predictive of VT. Scar is seen in all HCM variants, and is associated with maximal wall thickness. There may be a role for CE-CMR in improved risk stratification for individual patients with HCM.

[1]  W J McKenna,et al.  Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. , 2001, The American journal of cardiology.

[2]  Barry J Maron,et al.  American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice G , 2003, Journal of the American College of Cardiology.

[3]  M. Link,et al.  Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. , 2000, The New England journal of medicine.

[4]  M. Borggrefe,et al.  CMR scarring in a patient with hypertrophic cardiomyopathy correlates well with histological findings of fibrosis. , 2005, European heart journal.

[5]  Dudley J Pennell,et al.  Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. , 2006, Journal of the American College of Cardiology.

[6]  Dudley J Pennell,et al.  The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. , 2004, Journal of the American College of Cardiology.

[7]  Roger B. Davis,et al.  Impact of Unrecognized Myocardial Scar Detected by Cardiac Magnetic Resonance Imaging on Event-Free Survival in Patients Presenting With Signs or Symptoms of Coronary Artery Disease , 2006, Circulation.

[8]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[9]  Heiko Mahrholdt,et al.  Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. , 2002, Journal of the American College of Cardiology.

[10]  B. Maron,et al.  Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. , 1995, Journal of the American College of Cardiology.

[11]  W. Roberts,et al.  Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. , 1992, The American journal of cardiology.

[12]  D. Pennell,et al.  Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. , 2003, Journal of the American College of Cardiology.

[13]  G Thiene,et al.  Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. , 2000, Human pathology.

[14]  Robert G. Weiss,et al.  Magnetic Resonance Assessment of the Substrate for Inducible Ventricular Tachycardia in Nonischemic Cardiomyopathy , 2005, Circulation.

[15]  R. Kim,et al.  How we perform delayed enhancement imaging. , 2003, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[16]  P. Elliott,et al.  Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy , 2001, The Lancet.