A parallel and memory efficient algorithm for constructing the contour tree

The contour tree is a topological structure associated with a scalar function that tracks the connectivity of the evolving level sets of the function. It supports intuitive and interactive visual exploration and analysis of the scalar function. This paper describes a fast, parallel, and memory efficient algorithm for constructing the contour tree of a scalar function on shared memory systems. Comparisons with existing implementations show significant improvement in both the running time and the memory expended. The proposed algorithm is particularly suited for large datasets that do not fit in memory. For example, the contour tree for a scalar function defined on a 8.6 billion vertex domain (2048×2048×2048 volume data) can be efficiently constructed using less than 10GB of memory.

[1]  Gerik Scheuermann,et al.  Interactive Comparison of Scalar Fields Based on Largest Contours with Applications to Flow Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Gerik Scheuermann,et al.  Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[3]  Jack Snoeyink,et al.  Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.

[4]  Yusu Wang,et al.  Topological Landscape Ensembles for Visualization of Scalar‐Valued Functions , 2010, Comput. Graph. Forum.

[5]  Yuriko Takeshima,et al.  Topological volume skeletonization and its application to transfer function design , 2004, Graph. Model..

[6]  Vijay Natarajan,et al.  An Exploration Framework to Identify and Track Movement of Cloud Systems , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Bernd Hamann,et al.  Topology exploration with hierarchical landscapes , 2012, WASA '12.

[8]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[9]  Valerio Pascucci,et al.  Parallel Computation of the Topology of Level Sets , 2003, Algorithmica.

[10]  Marcus S. Day,et al.  Feature Tracking Using Reeb Graphs , 2011, Topological Methods in Data Analysis and Visualization.

[11]  J. Tierny,et al.  3D Mesh Skeleton Extraction Using Topological and Geometrical Analyses , 2006 .

[12]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[13]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, Algorithmica.

[14]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[15]  Franck Hétroy,et al.  Topological quadrangulations of closed triangulated surfaces using the Reeb graph , 2002, Graph. Model..

[16]  Vijay Natarajan,et al.  Symmetry in Scalar Field Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[17]  Giuseppe Patanè,et al.  Affine-Invariant Skeleton of 3D Shapes , 2002, Shape Modeling International.

[18]  Valerio Pascucci,et al.  Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees , 2009, IEEE Transactions on Visualization and Computer Graphics.

[19]  Yuriko Takeshima,et al.  Volume Data Mining Using 3D Field Topology Analysis , 2000, IEEE Computer Graphics and Applications.

[20]  Vijay Natarajan,et al.  A hybrid parallel algorithm for computing and tracking level set topology , 2012, 2012 19th International Conference on High Performance Computing.

[21]  R. Ho Algebraic Topology , 2022 .

[22]  Gunther H. Weber,et al.  Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[24]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[25]  John B. Bell,et al.  Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[26]  Gunther H. Weber,et al.  Distributed merge trees , 2013, PPoPP '13.

[27]  Gunther H. Weber,et al.  Distributed Contour Trees , 2014, Topological Methods in Data Analysis and Visualization.

[28]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jianlong Zhou,et al.  Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[30]  Yukio Matsumoto An Introduction to Morse Theory , 2001 .

[31]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[32]  Hans-Peter Seidel,et al.  Extended Branch Decomposition Graphs: Structural Comparison of Scalar Data , 2014, Comput. Graph. Forum.

[33]  Shigeo Takahashi Algorithms for Extracting Surface Topology from Digital Elevation Models , 2006 .

[34]  Vijay Natarajan,et al.  Computing Reeb Graphs as a Union of Contour Trees , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  Valerio Pascucci,et al.  In-Situ Feature Extraction of Large Scale Combustion Simulations Using Segmented Merge Trees , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[36]  Vijay Natarajan,et al.  Output-Sensitive Construction of Reeb Graphs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[37]  Yuriko Takeshima,et al.  Interval volume decomposer: a topological approach to volume traversal , 2005, IS&T/SPIE Electronic Imaging.

[38]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[39]  Jack Snoeyink,et al.  Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree , 2010, Comput. Geom..

[40]  Günter Rote,et al.  Simple and optimal output-sensitive construction of contour trees using monotone paths , 2005, Comput. Geom..

[41]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[42]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[43]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[44]  Jim Cox,et al.  Topological Zone Organization of Scalar Volume Data , 2004, Journal of Mathematical Imaging and Vision.