Channel Coding Inspired Contributions to Compressed Sensing

This thesis presents three independent contributions to the large and juvenile field of Compressed Sensing (CS). Thereby, a close connection to the mature field of channel coding is established with an interdisciplinary motivation. Both fields are united by their search for a unique sparsest solution to an underdetermined System of Linear Equations (SLE). Within the first contribution, Sparsity Aware Simplex Algorithms (SASAs) are provided which extend the well-known approach of Basis Pursuit (BP). The common concept of BP resembles a convex `1-relaxation to the non-deterministic polynomial-time hard sparse reconstruction problem. In case this relaxation does not lead to the sparsest solution, BP fails inevitably. By extending the famous simplex method for linear optimization, the sparsest solution might be found nevertheless. Thereby, the circumstance is exploited that the desired solution is contained in a degenerated vertex with high probability for systems in general position. All proposed SASAs favor such a degenerated solution against the `1-relaxation and improve thereby the recovery performance, where the variants differ in their trade-off between complexity and potential gain. The second contribution generalizes a minimal distance maximization approach for realvalued spherical codes to vector spaces over complex numbers. Furthermore, an equivalence relation is introduced by the concept of antipodal spherical codes, which ensures that vector pairs of minimal coherence correspond to those of largest minimum distance for these antipodal codes as it is proven within this thesis. Consequently, this relation can be used to extend the aforementioned distance optimization approach to the problem of coherence minimization for the case of antipodal spherical codes. The resulting Best Antipodal Spherical Code (BASC) search approach obtains vector sets which improve significantly on previous numerical results and are often close to the theoretical limit. Since the coherence is an important and limiting factor in many applications, the proposed BASC search approach is not only relevant for CS, where coherence is commonly used as uniqueness assuring property for sensing matrices. Beyond the direct CS application with respect to optimized sensing matrices, the potential use for adapting a measurement matrix to a given dictionary is also investigated. Thereby, the influence of two different coherence-based adaptation strategies is examined. The application of Complex-valued Reed–Solomon (CRS) codes as a deterministic CS scheme is described in details within the third contribution. Previous results in this direction have been extended, whereby particular focus has been put on noise resilience, as this is an often criticized weakness of CRS-based approaches. Within this chapter, power decoding methods have been adapted for three types of error locator algorithms: Peterson’s, Berlekamp–Massey, and extended Euclidean. Together with two error evaluator algorithms, namely Gorenstein–Zierler and Forney’s, the potential application in corresponding deterministic CS schemes has been considered. In order to counter the observed noise sensitivity, an iterative erasure and evaluation algorithm can be used which aims to determine the correct error locations. In contrast to conventional channel codes over finite fields, a low-degree Padéapproximation can be used for complex vector spaces to obtain reliability-like information on the error locations, which is subsequently used by continuity assisted decoding in order to decode even beyond the power decoding radius.

[1]  Zongben Xu,et al.  Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing , 2014, IEEE Transactions on Signal Processing.

[2]  Robert W. Heath,et al.  Constructing Packings in Grassmannian Manifolds via Alternating Projection , 2007, Exp. Math..

[3]  Madhu Sudan,et al.  Reconstructing curves in three (and higher) dimensional space from noisy data , 2003, STOC '03.

[4]  Steven D. Blostein,et al.  Low Complexity MIMO Precoding Codebooks from Orthoplex Packings , 2011, 2011 IEEE International Conference on Communications (ICC).

[5]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[6]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[7]  Robert W. Heath,et al.  Grassmannian beamforming for multiple-input multiple-output wireless systems , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[8]  Philip Schniter,et al.  Compressive Imaging Using Approximate Message Passing and a Markov-Tree Prior , 2010, IEEE Transactions on Signal Processing.

[9]  Robert F. H. Fischer,et al.  Multistage Bit-Wise Receivers for 4D Modulation Formats in Optical Communications , 2015 .

[10]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[11]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[12]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Cunsheng Ding,et al.  Codebooks from almost difference sets , 2008, Des. Codes Cryptogr..

[15]  Yuan Zhou Introduction to Coding Theory , 2010 .

[16]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[17]  G. Miller On the Solution of a System of Linear Equations , 1910 .

[18]  Oliver Henkel,et al.  Sphere-packing bounds in the Grassmann and Stiefel manifolds , 2003, IEEE Transactions on Information Theory.

[19]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[20]  Yuan Xing Lee,et al.  Decoding For Iterative Reed-solomon Coding Schemes , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[21]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[22]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[23]  Werner Henkel,et al.  Analog Codes for Gross Error Correction in Signal Transmission , 2011 .

[24]  Justin P. Haldar,et al.  Compressed-Sensing MRI With Random Encoding , 2011, IEEE Transactions on Medical Imaging.

[25]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[26]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[27]  A. Bjerhammar,et al.  Rectangular reciprocal matrices, with special reference to geodetic calculations , 1951 .

[28]  Martin Bossert,et al.  Low Coherence Sensing Matrices Based on Best Spherical Codes , 2013 .

[29]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[30]  S. A. Sherman,et al.  Providence , 1906 .

[31]  Keqin Feng,et al.  Construction of cyclotomic codebooks nearly meeting the Welch bound , 2012, Des. Codes Cryptogr..

[32]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[34]  Nam Yul Yu,et al.  A new class of near-optimal partial Fourier codebooks from an almost difference set , 2014, Des. Codes Cryptogr..

[35]  Dustin G. Mixon,et al.  Kirkman Equiangular Tight Frames and Codes , 2013, IEEE Transactions on Information Theory.

[36]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[37]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[38]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[39]  T. Marshall,et al.  Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..

[40]  Bristol , 1907 .

[41]  Robert W. Heath,et al.  Grassmannian beamforming for multiple-input multiple-output wireless systems , 2003, IEEE Trans. Inf. Theory.

[42]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[43]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[44]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[45]  Martin Bossert,et al.  Einführung in die Nachrichtentechnik , 2012 .

[46]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[47]  J. Massey,et al.  Welch’s Bound and Sequence Sets for Code-Division Multiple-Access Systems , 1993 .

[48]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[49]  Anru Zhang,et al.  Sharp RIP bound for sparse signal and low-rank matrix recovery , 2013 .

[50]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[51]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[52]  Robert W. Heath,et al.  Grassmannian signatures for CDMA systems , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[53]  Werner Henkel Analog Codes for Peak-to-Average Ratio Reduction , 1999 .

[54]  Martin Bossert,et al.  Deterministic Compressed Sensing with Power Decoding for Complex Reed-Solomon Codes , 2015 .

[55]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[56]  Robert D. Nowak,et al.  Compressive Sampling for Signal Detection , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[57]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[58]  J. Haupt,et al.  A Generalized Restricted Isometry Property , 2008 .

[59]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[60]  David C. Hoaglin,et al.  Some Implementations of the Boxplot , 1989 .

[61]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[62]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[63]  A. Robert Calderbank,et al.  Sparse reconstruction via the Reed-Muller Sieve , 2010, 2010 IEEE International Symposium on Information Theory.

[64]  Timothy N. Davidson,et al.  Flexible Codebook Design for Limited Feedback Systems Via Sequential Smooth Optimization on the Grassmannian Manifold , 2014, IEEE Transactions on Signal Processing.

[65]  Mojtaba Vaezi,et al.  Generalized and Extended Subspace Algorithms for Error Correction with Quantized DFT Codes , 2014, IEEE Transactions on Communications.

[66]  E. M. L. Beale,et al.  An alternative method for linear programming , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[67]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[68]  R. A. Rankin,et al.  On the minimal points of positive definite quadratic forms , 1956 .

[69]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[70]  Pierre Duhamel,et al.  On the use of cascade structure to correct impulsive noise in multicarrier systems , 2008, IEEE Transactions on Communications.

[71]  John Leech,et al.  Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.

[72]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[73]  Yuli Fu,et al.  Optimized Projection Matrix for Compressed Sensing , 2014, Circuits Syst. Signal Process..

[74]  A. Blokhuis SPHERE PACKINGS, LATTICES AND GROUPS (Grundlehren der mathematischen Wissenschaften 290) , 1989 .

[75]  P. B. Yale Geometry and symmetry , 1969 .

[76]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[77]  Risto Wichman,et al.  Geodesical codebook design for precoded MIMO systems , 2009, IEEE Communications Letters.

[78]  Robert W. Heath,et al.  On quasi-orthogonal signatures for CDMA systems , 2006, IEEE Transactions on Information Theory.

[79]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[80]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[81]  Dilip V. Sarwate Meeting the Welch Bound with Equality , 1998, SETA.

[82]  Joachim H. G. Ender,et al.  On compressive sensing applied to radar , 2010, Signal Process..

[83]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[84]  Jun Zhang,et al.  On Recovery of Sparse Signals via ℓ1 Minimization , 2008, ArXiv.

[85]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[86]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[87]  Martin Bossert,et al.  Collaborative Decoding of Interleaved Reed–Solomon Codes and Concatenated Code Designs , 2009, IEEE Transactions on Information Theory.

[88]  E. M. Hartwell Boston , 1906 .

[89]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[90]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[91]  Saeid Sanei,et al.  On optimization of the measurement matrix for compressive sensing , 2010, 2010 18th European Signal Processing Conference.

[92]  Martin Bossert,et al.  Channel Coding for Telecommunications , 1999 .

[93]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[94]  Dakshi Agrawal,et al.  Multiple-antenna signal constellations for fading channels , 2001, IEEE Trans. Inf. Theory.

[95]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[96]  Martin Bossert,et al.  A Unified View on Known Algebraic Decoding Algorithms and New Decoding Concepts , 2013, IEEE Transactions on Information Theory.

[97]  GeorgeA. Silver Switzerland , 1989, The Lancet.

[98]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[99]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[100]  Marc E. Pfetsch,et al.  The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[101]  Mahesh K. Varanasi,et al.  Modulation and Coding for Noncoherent Communications , 2002, J. VLSI Signal Process..

[102]  J. Massey Information theory: The copernican system of communications , 1984, IEEE Communications Magazine.

[103]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[104]  David J. C. MacKay,et al.  Good Codes Based on Very Sparse Matrices , 1995, IMACC.

[105]  G. Frobenius Ueber Eelationen zwischen den Näherungsbrüchen von Potenzreihen. , 1881 .

[106]  Babak Hassibi,et al.  Explicit measurements with almost optimal thresholds for compressed sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[107]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[108]  Cunsheng Ding,et al.  Signal Sets From Functions With Optimum Nonlinearity , 2007, IEEE Transactions on Communications.

[109]  Jinsong Wu,et al.  New Constructions of Codebooks Nearly Meeting the Welch Bound With Equality , 2014, IEEE Transactions on Information Theory.

[110]  Martin Bossert,et al.  Syndrome Decoding of Reed–Solomon Codes Beyond Half the Minimum Distance Based on Shift-Register Synthesis , 2010, IEEE Transactions on Information Theory.

[111]  Jack K. Wolf,et al.  Redundancy, the Discrete Fourier Transform, and Impulse Noise Cancellation , 1983, IEEE Trans. Commun..

[112]  Tony Rothman,et al.  Genius and Biographers: The Fictionalization of Evariste Galois , 1982 .

[113]  Christoforos N. Hadjicostis,et al.  Determination of the Number of Errors in DFT Codes Subject to Low-Level Quantization Noise , 2008, IEEE Transactions on Signal Processing.

[114]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[115]  Peter G. Casazza,et al.  Introduction to Finite Frame Theory , 2013 .

[116]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[117]  J. Pollard,et al.  The fast Fourier transform in a finite field , 1971 .

[118]  Tom Høholdt,et al.  A Course In Error-Correcting Codes , 2004, EMS textbooks in mathematics.

[119]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[120]  Phillipp Kaestner,et al.  Linear And Nonlinear Programming , 2016 .

[121]  Donald Goldfarb,et al.  Steepest-edge simplex algorithms for linear programming , 1992, Math. Program..

[122]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[123]  Zhifeng Zhang,et al.  Adaptive time-frequency decompositions , 1994 .

[124]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: II. analysis and validation , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[125]  Lie Wang,et al.  Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.

[126]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[127]  On the Noise-Resilience of OMP with BASC-Based Low Coherence Sensing Matrices , 2013 .

[128]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[129]  G. David Forney,et al.  On decoding BCH codes , 1965, IEEE Trans. Inf. Theory.

[130]  Norbert Goertz,et al.  Improving Approximate Message Passing Recovery of Sparse Binary Vectors by Post Processing , 2014 .

[131]  Georg Schmidt,et al.  Multi-Sequence Linear Shift-Register Synthesis: The Varying Length Case , 2006, 2006 IEEE International Symposium on Information Theory.

[132]  J. Fuchs More on sparse representations in arbitrary bases , 2003 .

[133]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[134]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[135]  Jared Tanner,et al.  Performance comparisons of greedy algorithms in compressed sensing , 2015, Numer. Linear Algebra Appl..

[136]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[137]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.

[138]  Leopold Kronecker,et al.  Vorlesungen über die Theorie der Determinanten , 1903 .

[139]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[140]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[141]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[142]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[143]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[144]  Werner Henkel Zur Decodierung algebraischer Blockcodes über komplexen Alphabeten , 1989 .

[145]  H. Piaggio An Introduction to the Geometry of N Dimensions , 1930, Nature.

[146]  Cunsheng Ding,et al.  A Generic Construction of Complex Codebooks Meeting the Welch Bound , 2007, IEEE Transactions on Information Theory.

[147]  C. Jacobi Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function. , .

[148]  H. Halberstam,et al.  North-Holland Mathematical Library , 2005 .

[149]  Aggelos K. Katsaggelos,et al.  Construction of Incoherent Unit Norm Tight Frames With Application to Compressed Sensing , 2014, IEEE Transactions on Information Theory.

[150]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[151]  R. Calderbank,et al.  Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery , 2009 .

[152]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[153]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[154]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[155]  Keqin Feng,et al.  Two Classes of Codebooks Nearly Meeting the Welch Bound , 2012, IEEE Transactions on Information Theory.

[156]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[157]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[158]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[159]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[160]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[161]  Mario Huemer,et al.  Non-Systematic Complex Number RS Coded OFDM by Unique Word Prefix , 2012, IEEE Transactions on Signal Processing.

[162]  Werner Henkel,et al.  OFDM and analog RS / BCH codes , .

[163]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[164]  Timothy N. Davidson,et al.  Noncoherent MIMO Communication: Grassmannian Constellations and Efficient Detection , 2009, IEEE Transactions on Information Theory.

[165]  Yoram Bresler,et al.  Further results on spectrum blind sampling of 2D signals , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[166]  Martin Bossert,et al.  Sparsity Aware Simplex Algorithms for Sparse Recovery , 2015 .

[167]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[168]  Cristian Rusu Design of Incoherent Frames via Convex Optimization , 2013, IEEE Signal Processing Letters.

[169]  A. Robert Calderbank,et al.  Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property , 2009, IEEE Journal of Selected Topics in Signal Processing.

[170]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[171]  Edwin Armstrong,et al.  COLUMBIA UNIVERSITY. , 1901, Science.

[172]  Jean-Claude Belfiore,et al.  Non-Coherent Codes over the Grassmannian , 2007, IEEE Transactions on Wireless Communications.

[173]  Farrokh Marvasti,et al.  Efficient algorithms for burst error recovery using FFT and other transform kernels , 1999, IEEE Trans. Signal Process..

[174]  Johan Sebastian Rosenkilde Nielsen,et al.  List Decoding of Algebraic Codes , 2013 .

[175]  D. Gibson,et al.  Redundancy , 1984 .

[176]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[177]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[178]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[179]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[180]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[181]  Cunsheng Ding,et al.  Complex Codebooks From Combinatorial Designs , 2006, IEEE Transactions on Information Theory.

[182]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[183]  K. Fernow New York , 1896, American Potato Journal.

[184]  Elza Erkip,et al.  On beamforming with finite rate feedback in multiple-antenna systems , 2003, IEEE Trans. Inf. Theory.

[185]  Martin Bossert,et al.  Coherence Optimization and Best Complex Antipodal Spherical Codes , 2014, IEEE Transactions on Signal Processing.

[186]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[187]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[188]  Farrokh Marvasti,et al.  Matrices With Small Coherence Using $p$-Ary Block Codes , 2012, IEEE Transactions on Signal Processing.

[189]  R. Remmert,et al.  European Mathematical Society , 1994 .

[190]  D. Lazi Class of block codes for the Gaussian channel , 1980 .

[191]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[192]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[193]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[194]  Patrick Fitzpatrick On the key equation , 1995, IEEE Trans. Inf. Theory.

[195]  Michael B. Wakin,et al.  The geometry of low-dimensional signal models , 2007 .

[196]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[197]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[198]  Martin Bossert,et al.  Dictionary Adaptation in Sparse Recovery Based on Different Types of Coherence , 2013, ArXiv.

[199]  Vahid Tarokh,et al.  A Frame Construction and a Universal Distortion Bound for Sparse Representations , 2008, IEEE Transactions on Signal Processing.

[200]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[201]  Ramdas Kumaresan Rank Reduction Techniques And Burst Error-correction Decoding In Real/complex Fields , 1985, Nineteeth Asilomar Conference on Circuits, Systems and Computers, 1985..

[202]  Emmanuel J. Candès,et al.  Error correction via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[203]  Richard J. Leake,et al.  Inverse of a finite-field Vandermonde matrix (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[204]  A. Robert Calderbank,et al.  A fast reconstruction algorithm for deterministic compressive sensing using second order reed-muller codes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[205]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[206]  Nam Yul Yu New construction of a near-optimal partial Fourier codebook using the structure of binary m-sequences , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[207]  Christine Guillemot,et al.  Subspace algorithms for error localization with quantized DFT codes , 2004, IEEE Transactions on Communications.

[208]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[209]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.

[210]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[211]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[212]  G. Robert Redinbo Correcting DFT Codes with a Modified Berlekamp-Massey Algorithm and Kalman Recursive Syndrome Extension , 2014, IEEE Transactions on Computers.

[213]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[214]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[215]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[216]  N. Zierler,et al.  A Class of Error-Correcting Codes in $p^m $ Symbols , 1961 .

[217]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[218]  V. Prasolov Problems and theorems in linear algebra , 1994 .

[219]  C. Curtis The Mathematical writings of Évariste Galois , 2012 .

[220]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[221]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[222]  C. E. Lemke,et al.  The dual method of solving the linear programming problem , 1954 .

[223]  Nam Yul Yu,et al.  A Construction of Codebooks Associated With Binary Sequences , 2012, IEEE Transactions on Information Theory.

[224]  G. Robert Redinbo Decoding real block codes: Activity detection Wiener estimation , 2000, IEEE Trans. Inf. Theory.

[225]  D. D. Joshi,et al.  A Note on Upper Bounds for Minimum Distance Codes , 1958, Inf. Control..

[226]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .