Analysis of Relations between NMDA Receptors and GABA Release at Olfactory Bulb Reciprocal Synapses

[1]  G. Shepherd Responses of mitral cells to olfactory nerve volleys in the rabbit , 1963, The Journal of physiology.

[2]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[3]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[4]  J. Price The synaptic vesicles of the reciprocal synapse of the olfactory bulb. , 1968, Brain research.

[5]  R. Nicoll,et al.  Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. , 1969, Brain research.

[6]  T. Powell,et al.  The synaptology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[7]  T. Powell,et al.  An electron-microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere. , 1970, Journal of cell science.

[8]  G. Shepherd,et al.  Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb , 1979, Brain Research.

[9]  R. Nicoll,et al.  Dendrodendritic inhibition: demonstration with intracellular recording. , 1980, Science.

[10]  G M Shepherd,et al.  Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. , 1981, The Journal of physiology.

[11]  G. Shepherd,et al.  GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. , 1981, Journal of neurophysiology.

[12]  R. Nicoll,et al.  An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb , 1982, The Journal of physiology.

[13]  T. Reese,et al.  Cytoplasmic organization in cerebellar dendritic spines , 1983, The Journal of cell biology.

[14]  R. Eckert,et al.  Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. , 1984, Biophysical journal.

[15]  M. Mayer,et al.  The action of N‐methyl‐D‐aspartic acid on mouse spinal neurones in culture. , 1985, The Journal of physiology.

[16]  N. Harrison,et al.  Quantitative studies on some antagonists of N‐methyl D‐aspartate in slices of rat cerebral cortex , 1985, British journal of pharmacology.

[17]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[18]  M. Mayer,et al.  Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. , 1989, The Journal of physiology.

[19]  C. Greer,et al.  Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  G. Shepherd,et al.  Serial reconstructions of granule cell spines in the mammalian olfactory bulb , 1991, Synapse.

[21]  E Neher,et al.  Calcium requirements for secretion in bovine chromaffin cells. , 1992, The Journal of physiology.

[22]  J S Kauer,et al.  GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb. , 1993, The Journal of physiology.

[23]  R. Zucker The calcium concentration clamp: spikes and reversible pulses using the photolabile chelator DM-nitrophen. , 1993, Cell calcium.

[24]  A. Momiyama,et al.  Different types of calcium channels mediate central synaptic transmission , 1993, Nature.

[25]  J. Mallet,et al.  Characterization of a presynaptic glutamate receptor. , 1993, Science.

[26]  T. Dawson,et al.  Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Wade G. Regehr,et al.  Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses , 1994, Neuron.

[28]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[29]  J S Kauer,et al.  GABAergic and glutamatergic synaptic input to identified granule cells in salamander olfactory bulb. , 1994, The Journal of physiology.

[30]  R. Zucker,et al.  Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. , 1994, Journal of neurophysiology.

[31]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[32]  J. Lisman,et al.  Who's been nibbling on my PSD: Is it LTD? , 1994, Journal of Physiology-Paris.

[33]  Heinrich Betz,et al.  From vesicle docking to endocytosis: Intermediate reactions of exocytosis , 1995, Neuron.

[34]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[36]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[37]  R. Petralia,et al.  Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus , 1996, The Journal of comparative neurology.

[38]  A. Burkhalter,et al.  Regional and laminar differences in synaptic localization of NMDA receptor subunit NR1 splice variants in rat visual cortex and hippocampus , 1996, The Journal of comparative neurology.

[39]  F. Conti,et al.  Presynaptic NMDA receptors in the neocortex are both auto- and heteroreceptors. , 1996, Neuroreport.

[40]  R. Gray,et al.  Hippocampal synaptic transmission enhanced by low concentrations of nicotine , 1996, Nature.

[41]  Leon Lagnado,et al.  Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells , 1996, Neuron.

[42]  E. V. Van Bockstaele,et al.  Selective distribution of the NMDA‐R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: An immunoelectron microscopic study , 1996, The Journal of comparative neurology.

[43]  P. Brennan,et al.  NEURAL MECHANISMS OF MAMMALIAN OLFACTORY LEARNING , 1997, Progress in Neurobiology.

[44]  H. Muyderman,et al.  Ca2+ ion permeability properties of (R,S) alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in isolated interneurons from the olfactory bulb of the rat. , 1997, Journal of neurophysiology.

[45]  Gordon M Shepherd,et al.  Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb , 1997, Brain Research.

[46]  V. Pickel,et al.  Dual Ultrastructural Localization of μ-Opioid Receptors and NMDA-Type Glutamate Receptors in the Shell of the Rat Nucleus Accumbens , 1997, The Journal of Neuroscience.

[47]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[48]  G M Shepherd,et al.  Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. , 1997, Science.

[49]  A. Basbaum,et al.  NMDA-receptor regulation of substance P release from primary afferent nociceptors , 1997, Nature.

[50]  J. Gu,et al.  Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses , 1997, Nature.

[51]  W. Fu,et al.  Regulation of Presynaptic NMDA Responses by External and Intracellular pH Changes at Developing Neuromuscular Synapses , 1998, The Journal of Neuroscience.

[52]  J. Isaacson,et al.  Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS , 1998, Neuron.

[53]  S. Waxman,et al.  Endogenous NMDA-receptor activation regulates glutamate release in cultured spinal neurons. , 1998, Journal of neurophysiology.

[54]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[55]  I. Parnas,et al.  Functional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction. , 1998, Journal of neurophysiology.

[56]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Kullmann,et al.  Extrasynaptic Glutamate Diffusion in the Hippocampus: Ultrastructural Constraints, Uptake, and Receptor Activation , 1998, The Journal of Neuroscience.

[58]  F. D. da Silva,et al.  A presynaptic N‐methyl‐d‐aspartate autoreceptor in rat hippocampus modulating amino acid release from a cytoplasmic pool , 1998, The European journal of neuroscience.

[59]  G. Westbrook,et al.  Dendrodendritic Inhibition in the Olfactory Bulb Is Driven by NMDA Receptors , 1998, The Journal of Neuroscience.

[60]  E. A. Schwartz,et al.  Continuous and Transient Vesicle Cycling at a Ribbon Synapse , 1998, The Journal of Neuroscience.

[61]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[62]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[63]  B Sakmann,et al.  R-type Ca2+ currents evoke transmitter release at a rat central synapse. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[65]  S. Alford,et al.  NMDA Receptor-Mediated Control of Presynaptic Calcium and Neurotransmitter Release , 1999, The Journal of Neuroscience.

[66]  A. Marty,et al.  Presynaptic Effects of NMDA in Cerebellar Purkinje Cells and Interneurons , 1999, The Journal of Neuroscience.

[67]  G. Westbrook,et al.  Regulation of synaptic timing in the olfactory bulb by an A-type potassium current , 1999, Nature Neuroscience.

[68]  J. Isaacson Glutamate Spillover Mediates Excitatory Transmission in the Rat Olfactory Bulb , 1999, Neuron.

[69]  C. Greer,et al.  Differential distribution of ionotropic glutamate receptor subunits in the rat olfactory bulb , 1999, The Journal of comparative neurology.

[70]  M. T. Shipley,et al.  Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents. , 1999, Journal of neurophysiology.