On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures

We continue the investigation of Bernstein-von Mises theorems for nonparametric Bayes procedures from [Ann. Statist. 41 (2013) 1999-2028]. We introduce multiscale spaces on which nonparametric priors and posteriors are naturally defined, and prove Bernstein-von Mises theorems for a variety of priors in the setting of Gaussian nonparametric regression and in the i.i.d. sampling model. From these results we deduce several applications where posterior-based inference coincides with efficient frequentist procedures, including Donsker- and Kolmogorov-Smirnov theorems for the random posterior cumulative distribution functions. We also show that multiscale posterior credible bands for the regression or density function are optimal frequentist confidence bands.

[1]  R. Dudley,et al.  On the Lower Tail of Gaussian Seminorms , 1979 .

[2]  P. Hall On the rate of convergence of normal extremes , 1979 .

[3]  Albert Y. Lo,et al.  Weak convergence for Dirichlet processes , 1983 .

[4]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[5]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[6]  P. Hall EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY OF BOOTSTRAP CONFIDENCE INTERVALS FOR A PROBABILITY DENSITY , 1992 .

[7]  B. Roynette,et al.  Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .

[8]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[9]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[10]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[11]  Pier Luigi Conti,et al.  Large sample Bayesian analysis for ${\rm Geo}/G/1$ discrete-time queueing models , 1999 .

[12]  Subhashis Ghosal,et al.  Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .

[13]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[14]  M. Ledoux The concentration of measure phenomenon , 2001 .

[15]  V. Spokoiny,et al.  Multiscale testing of qualitative hypotheses , 2001 .

[16]  Yongdai Kim,et al.  A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.

[17]  Approximated inference for the quantile function via Dirichlet processes , 2004 .

[18]  N. Hjort,et al.  NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .

[19]  Yongdai Kim The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.

[20]  P. Davies,et al.  Nonparametric Regression, Confidence Regions and Regularization , 2007, 0711.0690.

[21]  N. Hjort,et al.  NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .

[22]  V. Bogachev Gaussian Measures on a , 2022 .

[23]  L. Duembgen,et al.  Multiscale inference about a density , 2007, 0706.3968.

[24]  A. W. Vaart,et al.  Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.

[25]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[26]  J. Rousseau,et al.  BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY , 2009, 0908.4167.

[27]  R. Nickl,et al.  Uniform limit theorems for wavelet density estimators , 2008, 0805.1406.

[28]  Stephen G. Walker,et al.  Quantile pyramids for Bayesian nonparametrics , 2009, 0902.4410.

[29]  I. Johnstone High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.

[30]  Dominique Bontemps,et al.  Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.

[31]  R. Nickl,et al.  CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.

[32]  H. Leahu On the Bernstein-von Mises phenomenon in the Gaussian white noise model , 2011 .

[33]  Axel Munk,et al.  Multiscale methods for shape constraints in deconvolution: Confidence statements for qualitative features. , 2011, 1107.1404.

[34]  R. Nickl,et al.  Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.

[35]  Kengo Kato,et al.  Quasi-Bayesian analysis of nonparametric instrumental variables models , 2012, 1204.2108.

[36]  A General Bernstein--von Mises Theorem in semiparametric models , 2013 .

[37]  I. Castillo On Bayesian supremum norm contraction rates , 2013, 1304.1761.

[38]  A. W. Vaart,et al.  Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1310.4489.

[39]  J. Rousseau,et al.  A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.