On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures
暂无分享,去创建一个
[1] R. Dudley,et al. On the Lower Tail of Gaussian Seminorms , 1979 .
[2] P. Hall. On the rate of convergence of normal extremes , 1979 .
[3] Albert Y. Lo,et al. Weak convergence for Dirichlet processes , 1983 .
[4] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[5] E. Giné,et al. Bootstrapping General Empirical Measures , 1990 .
[6] P. Hall. EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY OF BOOTSTRAP CONFIDENCE INTERVALS FOR A PROBABILITY DENSITY , 1992 .
[7] B. Roynette,et al. Quelques espaces fonctionnels associés à des processus gaussiens , 1993 .
[8] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[9] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[10] D. Freedman. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .
[11] Pier Luigi Conti,et al. Large sample Bayesian analysis for ${\rm Geo}/G/1$ discrete-time queueing models , 1999 .
[12] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[13] P. Davies,et al. Local Extremes, Runs, Strings and Multiresolution , 2001 .
[14] M. Ledoux. The concentration of measure phenomenon , 2001 .
[15] V. Spokoiny,et al. Multiscale testing of qualitative hypotheses , 2001 .
[16] Yongdai Kim,et al. A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.
[17] Approximated inference for the quantile function via Dirichlet processes , 2004 .
[18] N. Hjort,et al. NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .
[19] Yongdai Kim. The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.
[20] P. Davies,et al. Nonparametric Regression, Confidence Regions and Regularization , 2007, 0711.0690.
[21] N. Hjort,et al. NONPARAMETRIC QUANTILE INFERENCE USING DIRICHLET PROCESSES , 2006 .
[22] V. Bogachev. Gaussian Measures on a , 2022 .
[23] L. Duembgen,et al. Multiscale inference about a density , 2007, 0706.3968.
[24] A. W. Vaart,et al. Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.
[25] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[26] J. Rousseau,et al. BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY , 2009, 0908.4167.
[27] R. Nickl,et al. Uniform limit theorems for wavelet density estimators , 2008, 0805.1406.
[28] Stephen G. Walker,et al. Quantile pyramids for Bayesian nonparametrics , 2009, 0902.4410.
[29] I. Johnstone. High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.
[30] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[31] R. Nickl,et al. CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.
[32] H. Leahu. On the Bernstein-von Mises phenomenon in the Gaussian white noise model , 2011 .
[33] Axel Munk,et al. Multiscale methods for shape constraints in deconvolution: Confidence statements for qualitative features. , 2011, 1107.1404.
[34] R. Nickl,et al. Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.
[35] Kengo Kato,et al. Quasi-Bayesian analysis of nonparametric instrumental variables models , 2012, 1204.2108.
[36] A General Bernstein--von Mises Theorem in semiparametric models , 2013 .
[37] I. Castillo. On Bayesian supremum norm contraction rates , 2013, 1304.1761.
[38] A. W. Vaart,et al. Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1310.4489.
[39] J. Rousseau,et al. A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.