General framework for verifying pure quantum states in the adversarial scenario

Bipartite and multipartite entangled states are of central interest in quantum information processing and foundational studies. Efficient verification of these states, especially in the adversarial scenario, is a key to various applications, including quantum computation, quantum simulation, and quantum networks. However, little is know about this topic in the adversarial scenario. Here we initiate a systematic study of pure-state verification in the adversarial scenario. In particular, we introduce a general method for determining the minimal number of tests required by a given strategy to achieve a given precision. In the case of homogeneous strategies, we can even derive an analytical formula. Furthermore, we propose a general recipe to verifying pure quantum states in the adversarial scenario by virtue of protocols for the nonadversarial scenario. Thanks to this recipe, the resource cost for verifying an arbitrary pure state in the adversarial scenario is comparable to the counterpart for the nonadversarial scenario, and the overhead is at most three times for high-precision verification. Our recipe can readily be applied to efficiently verify bipartite pure states, stabilizer states, hypergraph states, weighted graph states, and Dicke states in the adversarial scenario.

[1]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[2]  Masahito Hayashi,et al.  Optimal verification of two-qubit pure states , 2019, Physical Review A.

[3]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[4]  Jiangwei Shang,et al.  Efficient Verification of Dicke States , 2019, Physical Review Applied.

[5]  Zeng-Bing Chen,et al.  Qudit hypergraph states and their properties , 2017, 1701.07733.

[6]  Masahito Hayashi,et al.  A study of LOCC-detection of a maximally entangled state using hypothesis testing , 2006 .

[7]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[8]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[10]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[11]  Andrea Coladangelo,et al.  Self-testing multipartite entangled states through projections onto two systems , 2017, New Journal of Physics.

[12]  Xiao-Dong Yu,et al.  Optimal verification of general bipartite pure states , 2019, npj Quantum Information.

[13]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.

[14]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[15]  Masahito Hayashi,et al.  Verifying commuting quantum computations via fidelity estimation of weighted graph states , 2019, New Journal of Physics.

[16]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[17]  Masahito Hayashi,et al.  Efficient Verification of Hypergraph States , 2018, Physical Review Applied.

[18]  Ivan vSupi'c,et al.  Self-testing of quantum systems: a review , 2019, Quantum.

[19]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[20]  Masahito Hayashi,et al.  Optimal verification and fidelity estimation of maximally entangled states , 2019, Physical Review A.

[21]  G. Tóth,et al.  Bell inequalities for graph states. , 2004, Physical review letters.

[22]  Tomoyuki Morimae,et al.  Resource-efficient verification of quantum computing using Serfling’s bound , 2018, npj Quantum Information.

[23]  Tomoyuki Morimae,et al.  Verification of Many-Qubit States , 2017, Physical Review X.

[24]  Masahito Hayashi,et al.  Efficient Verification of Pure Quantum States in the Adversarial Scenario. , 2019, Physical review letters.

[25]  Tomoyuki Morimae,et al.  Quantum computational universality of hypergraph states with Pauli-X and Z basis measurements , 2018, Scientific Reports.

[26]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[27]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[28]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[29]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[30]  Barbara Kraus,et al.  Local entanglability and multipartite entanglement , 2009 .

[31]  O. Guhne,et al.  Qudit hypergraph states , 2016, 1612.06418.

[32]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[33]  Masahito Hayashi,et al.  Self-guaranteed measurement-based quantum computation , 2016, 1603.02195.

[34]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.

[35]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[36]  Otfried Gühne,et al.  Extreme Violation of Local Realism in Quantum Hypergraph States. , 2015, Physical review letters.

[37]  Masahito Hayashi,et al.  Verification of hypergraph states , 2017 .

[38]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[39]  Valerio Scarani,et al.  All pure bipartite entangled states can be self-tested , 2016, Nature Communications.

[40]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[41]  M. Hayashi,et al.  Verifiable fault tolerance in measurement-based quantum computation , 2016, 1610.05216.

[42]  Masahito Hayashi,et al.  Group theoretical study of LOCC-detection of maximally entangled states using hypothesis testing , 2008, 0810.3380.

[43]  Aleksandra Dimić,et al.  Single-copy entanglement detection , 2017, 1705.06719.

[44]  Ashley Montanaro,et al.  Optimal Verification of Entangled States with Local Measurements. , 2017, Physical review letters.

[45]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[46]  Akimasa Miyake,et al.  Hierarchy of universal entanglement in 2D measurement-based quantum computation , 2015, npj Quantum Information.

[47]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[48]  Wolfgang Dür,et al.  Weighted graph states and applications to spin chains, lattices and gases , 2007 .

[49]  D Cavalcanti,et al.  Distribution of entanglement in large-scale quantum networks , 2012, Reports on progress in physics. Physical Society.

[50]  V. Scarani,et al.  Nonlocality of cluster states of qubits , 2004, quant-ph/0405119.

[51]  Yun-Guang Han,et al.  Efficient verification of bipartite pure states , 2019, Physical Review A.

[52]  Akimasa Miyake,et al.  Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states , 2018, Physical Review A.

[53]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[54]  Damian Markham,et al.  A Simple Protocol for Certifying Graph States and Applications in Quantum Networks , 2018, Cryptogr..

[55]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[56]  Ri Qu,et al.  Encoding hypergraphs into quantum states , 2013 .