Eigenvalue Results for Large Scale Random Vandermonde Matrices With Unit Complex Entries

This paper centers on the limit eigenvalue distribution for random Vandermonde matrices with unit magnitude complex entries. The phases of the entries are chosen independently and identically distributed from the interval [-π,π] . Various types of distribution for the phase are considered and we establish the existence of the empirical eigenvalue distribution in the large matrix limit on a wide range of cases. The rate of growth of the maximum eigenvalue is examined and shown to be no greater than O(logN) and no slower than O(logN/loglogN) where N is the dimension of the matrix. Additional results include the existence of the capacity of the Vandermonde channel (limit integral for the expected log determinant).

[1]  O. Johnson Free Random Variables , 2004 .

[2]  D. C. Champeney A handbook of Fourier theorems , 1987 .

[3]  R. E. Edwards,et al.  Fourier series : a modern introduction , 1982 .

[4]  Benjamin Friedlander,et al.  Analysis of the asymptotic relative efficiency of the MUSIC algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[6]  Piotr Sniady,et al.  Second order freeness and fluctuations of random matrices: II. Unitary random matrices , 2007 .

[7]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[8]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[9]  M. Zwaan A handbook of fourier theorems , 1990 .

[10]  Piotr Sniady,et al.  Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants , 2006, Documenta Mathematica.

[11]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[12]  K. Parthasarathy Introduction to Probability and Measure , 1979 .

[13]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[14]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[15]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[16]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[17]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[21]  Emanuele Viterbo,et al.  Reconstruction of Multidimensional Signals From Irregular Noisy Samples , 2008, IEEE Transactions on Signal Processing.

[22]  Martin Raab,et al.  "Balls into Bins" - A Simple and Tight Analysis , 1998, RANDOM.

[23]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[24]  Mérouane Debbah,et al.  Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle , 2008, 0802.3570.

[25]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[28]  R. Speicher Free Probability Theory , 1996, Oberwolfach Reports.

[29]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[30]  Thomas Strohmer,et al.  How to recover smooth object boundaries in noisy medical images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[31]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[32]  Kellen Petersen August Real Analysis , 2009 .