Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

The properties and microstructure of alkali-activated (AA) vitreous calcium aluminosilicate (VCAS) are presented in this paper. VCAS is manufactured from a by-product of the glass fiber industry and has been activated using NaOH and KOH solutions. The microstructure and mechanical properties of AA VCAS pastes and mortars are reported. The results show that depending on the type and concentration of hydroxide solution used, mortar samples with compressive strengths up to 77 MPa can be formed after curing for three days at 65 °C. The research demonstrates the potential of VCAS to produce AA cements and the importance of alkali type and concentration in optimizing properties and microstructure.

[1]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[2]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[3]  J. V. Deventer,et al.  Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates , 2003 .

[4]  N. Neithalath,et al.  Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan , 2008 .

[5]  A. Boccaccini,et al.  Glass matrix composites from coal flyash and waste glass , 1997 .

[6]  J. Provis,et al.  In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[8]  A. Boccaccini,et al.  Geopolymers from DC Plasma-Treated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag , 2011 .

[9]  Ángel Palomo,et al.  Activación alcalina de cenizas volantes. Estudio comparativo entre activadores sódicos y potásicos , 2006 .

[10]  Martin Schneider,et al.  Sustainable cement production—present and future , 2011 .

[11]  S. Bernal,et al.  Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder , 2013 .

[12]  A. Fernández-Jiménez,et al.  FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .

[13]  D Amutha Rani,et al.  Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. , 2010, Journal of hazardous materials.

[14]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[15]  N. Neithalath,et al.  Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume , 2009 .

[16]  Kenneth K. Humphreys,et al.  The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions , 2003 .

[17]  C. Cheeseman,et al.  Geopolymerisation of silt generated from construction and demolition waste washing plants. , 2009, Waste management.

[18]  Ángel Palomo,et al.  An XRD Study of the Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash , 2007 .

[19]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[20]  L. Soriano,et al.  Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS) , 2013, Bulletin of Materials Science.

[21]  Hwai Chung Wu,et al.  New building materials from fly ash-based lightweight inorganic polymer , 2007 .