Application of Lyapunov Exponents to Strange Attractors and Intact & Damaged Ship Stability

[1]  Bruno Eckhardt,et al.  Local Lyapunov exponents in chaotic systems , 1993 .

[2]  A. Troesch,et al.  Use of Lyapunov Exponents to Predict Chaotic Vessel Motions , 2011 .

[3]  Kazuyuki Aihara,et al.  Coexistence of Periodic Roll Motion and Chaotic One in a Forced Flooded Ship , 1998 .

[4]  J. Crawford Introduction to bifurcation theory , 1991 .

[5]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[6]  Kazuyuki Aihara,et al.  Experimental study on chaotic motion of a flooded ship in waves , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Igor Chueshov,et al.  Stability and Capsizing of Ships in Random Sea – a Survey , 2004 .

[8]  K. J. Spyrou Homoclinic connections and period doublings of a ship advancing in quartering waves. , 1996, Chaos.

[9]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[10]  Kazuyuki Aihara,et al.  Nonlinear analyses of roll motion of a flooded ship in waves , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Kenneth Weems,et al.  NONLINEAR SHIP ROLL SIMULATION WITH WATER-ON-DECK , 2002 .

[13]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[14]  Dick K. P. Yue,et al.  Numerical Solutions for Large-Amplitude Ship Motions in the Time Domain , 1991 .

[15]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .