Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species

[1]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[2]  L. T. Evans,et al.  Wheat Science - Today and Tomorrow , 2009 .

[3]  J. Murphy,et al.  Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii , 2008, Theoretical and Applied Genetics.

[4]  T. Schnurbusch,et al.  An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population , 2007, Theoretical and Applied Genetics.

[5]  U. Lohwasser,et al.  Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae , 2007, Euphytica.

[6]  J. Dvorak,et al.  Discovery and Mapping of Wheat Ph1 Suppressors , 2006, Genetics.

[7]  U. Lohwasser,et al.  Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum) L. , 2006, Euphytica.

[8]  A. Leitch,et al.  Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. , 2006, Genome.

[9]  C. Feuillet,et al.  Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species , 2006, Theoretical and Applied Genetics.

[10]  M. Röder,et al.  Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. , 2005, Genome.

[11]  J. Dvorak,et al.  Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes , 2005, Theoretical and Applied Genetics.

[12]  C. Feuillet,et al.  High transferability of bread wheat EST-derived SSRs to other cereals , 2005, Theoretical and Applied Genetics.

[13]  B. Gill,et al.  Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. , 2004, Genome.

[14]  Miftahudin,et al.  A Chromosome Bin Map of 2148 Expressed Sequence Tag Loci of Wheat Homoeologous Group 7 , 2004, Genetics.

[15]  Miftahudin,et al.  Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4 , 2004, Genetics.

[16]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[17]  B. Gandon,et al.  Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs) , 2004, Theoretical and Applied Genetics.

[18]  F. Zeller,et al.  Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line , 2003, Euphytica.

[19]  G. Brown-Guedira,et al.  Performance and Mapping of Leaf Rust Resistance Transferred to Wheat from Triticum timopheevii subsp. armeniacum. , 2003, Phytopathology.

[20]  Junhua Peng,et al.  The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. , 2003, Genome research.

[21]  R. Varshney,et al.  Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) , 2003, Theoretical and Applied Genetics.

[22]  M. Feldman,et al.  The Impact of Polyploidy on Grass Genome Evolution , 2002, Plant Physiology.

[23]  A. Brandolini,et al.  Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. , 2002, Genetical research.

[24]  K. Edwards,et al.  Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat , 2002, Theoretical and Applied Genetics.

[25]  R. Haselkorn,et al.  Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. D'Ovidio,et al.  RFLP analysis of Aegilops species belonging to the Sitopsis section , 2002, Genetic Resources and Crop Evolution.

[27]  Elena Boyko,et al.  A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function , 2002, Plant Molecular Biology.

[28]  K. Devos,et al.  Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat , 2001, Theoretical and Applied Genetics.

[29]  G. Charmet,et al.  Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes , 2001, Theoretical and Applied Genetics.

[30]  T. Naranjo,et al.  Chromosome structure of Triticum timopheevii relative to T. turgidum. , 2000, Genome.

[31]  P. Zhang,et al.  Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines , 2000, Theoretical and Applied Genetics.

[32]  K. Devos,et al.  Genome Relationships: The Grass Model in Current Research , 2000, Plant Cell.

[33]  M. Tixier,et al.  Detection of QTLs for crossability in wheat using a doubled-haploid population , 1998, Theoretical and Applied Genetics.

[34]  P. Ranjekar,et al.  Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat , 1998, Theoretical and Applied Genetics.

[35]  M. Ganal,et al.  A microsatellite map of wheat. , 1998, Genetics.

[36]  T. Naranjo,et al.  Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat , 1998, Theoretical and Applied Genetics.

[37]  B. Gill,et al.  Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. , 1996, Genome.

[38]  B. Gill,et al.  Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. , 1996, Genetics.

[39]  K. Tsunewaki,et al.  Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species , 1996, Theoretical and Applied Genetics.

[40]  Jan Dvorak,et al.  Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. , 1996, Genetics.

[41]  P. Jauhar Methods of Genome Analysis in Plants , 1996 .

[42]  J. Anderson,et al.  Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. , 1995, Genetics.

[43]  J. Dvorak,et al.  Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination , 1995, Theoretical and Applied Genetics.

[44]  J. Orellana,et al.  Metaphase I-bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and S or Sl genomes of Ae. speltoides, Ae. longissima and Ae. sharonensis , 1994, Theoretical and Applied Genetics.

[45]  K. Devos,et al.  Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley , 1993, Theoretical and Applied Genetics.

[46]  J. Orellana,et al.  Metaphase I bound arms frequency and genome analysis in wheat-Aegilops hybrids , 1991, Theoretical and Applied Genetics.

[47]  J Dvorák,et al.  Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Naranjo Chromosome structure of durum wheat , 1990, Theoretical and Applied Genetics.

[49]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[50]  K. Tsunewaki,et al.  The Molecular Basis of Genetic Diversity among Cytoplasms of TRITICUM and AEGILOPS Species. II. on the Origin of Polyploid Wheat Cytoplasms as Suggested by Chloroplast DNA Restriction Fragment Patterns. , 1983, Genetics.

[51]  J. Dvorak TRANSFER OF LEAF RUST RESISTANCE FROM AEGILOPS SPELTOIDES TO TRITICUM AESTIVUM , 1977 .

[52]  J. Dvorak THE RELATIONSHIP BETWEEN THE GENOME OF TRITICUM URARTU AND THE A AND B GENOMES OF TRITICUM AESTIVUM , 1976 .

[53]  T. E. Miller,et al.  Equivalence of the A genome of bread wheat and that of Triticum urartu , 1976 .

[54]  R. Athwal,et al.  A reassessment of the course of evolution of wheat. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Brandolini,et al.  Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. , 2007, Molecular biology and evolution.

[56]  M. Ganal,et al.  Microsatellite and SNP Markers in Wheat Breeding , 2007 .

[57]  R. Varshney,et al.  Genomics-Assisted Crop Improvement , 2007 .

[58]  T. Efremova,et al.  Wheat genome structure: translocations during the course of polyploidization , 2005, Functional & Integrative Genomics.

[59]  Jiming Jiang,et al.  Different species-specific chromosome translocations inTriticum timopheevii andT. turgidum support the diphyletic origin of polyploid wheats , 2005, Chromosome Research.

[60]  K. Tsunewaki,et al.  Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats , 2004, Theoretical and Applied Genetics.

[61]  Jiming Jiang,et al.  Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status , 2004, Euphytica.

[62]  J. Valkoun Wheat pre-breeding using wild progenitors , 2004, Euphytica.

[63]  F. Zeller,et al.  Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova , 2004, Euphytica.

[64]  Beat Keller,et al.  Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. , 2002, Annals of botany.

[65]  V. K. Shumnyĭ,et al.  Сравнительная генетика пшениц и их сородичей = Comparative genetics of wheats and their related species , 2002 .

[66]  A. Meister,et al.  Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. , 2000, Genetics.

[67]  B. Gill,et al.  Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. , 1996, Genetics.

[68]  B. Friebe Chromosome banding and genome analysis in diploid and cultivated polyploid wheats , 1996 .

[69]  R. W. Allard,et al.  Formulas and tables to facilitate the calculation of recombination values in heredity , 1956 .

[70]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .