A close-ring pair terahertz metamaterial resonating at normal incidence.

We present a systematic study of a close-ring pair based freestanding metamaterial fabricated by double-layer, self-aligned photolithography. Terahertz time-domain spectroscopy transmission measurements and numerical simulations have revealed negative index of refraction in the frequency range of 0.66-0.90 THz under normal wave incidence. The observed resonance behaviors can be well explained by a theoretical circuit model. The electromagnetic properties and the figure of merit of such close-ring metamaterials are also explored in terms of geometrical parameters of the unit cell with a goal of providing optimized design for three-dimensional metamaterials and potential device applications.

[1]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[2]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[3]  F. Capolino,et al.  2-D Isotropic Effective Negative Refractive Index Metamaterial in Planar Technology , 2009, IEEE Microwave and Wireless Components Letters.

[4]  Remigius Zengerle,et al.  Negative index bulk metamaterial at terahertz frequencies. , 2008, Optics express.

[5]  Richard W. Ziolkowski,et al.  Metamaterial-based efficient electrically small antennas , 2006 .

[6]  E. Anderson,et al.  Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators , 2007 .

[7]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[8]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[9]  Shuang Zhang,et al.  Near-infrared double negative metamaterials. , 2005, Optics express.

[10]  H. Kurz,et al.  Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies. , 2008, Optics letters.

[11]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[12]  Filippo Capolino,et al.  Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties , 2009 .

[13]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[14]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[15]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[16]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[17]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[18]  Thomas Koschny,et al.  Unifying approach to left-handed material design. , 2006, Optics letters.

[19]  Changtao Wang,et al.  Sub-diffraction-limited interference photolithography with metamaterials. , 2008, Optics express.

[20]  Q. Xing,et al.  Broadband resonant terahertz transmission in a composite metal-dielectric structure. , 2009, Optics express.

[21]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[22]  Carsten Rockstuhl,et al.  Spiral-type terahertz antennas and the manifestation of the Mushiake principle. , 2009, Optics express.

[23]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[25]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .