Data-driven Visual Graph Query Interface Construction and Maintenance: Challenges and Opportunities

Visual query interfaces make it easy for scientists and other nonexpert users to query a data collection. Heretofore, visual query interfaces have been statically-constructed, independent of the data. In this paper we outline a vision of a different kind of interface, one that is built (in part) from the data. In our data-driven approach, the visual interface is dynamically constructed and maintained. A data-driven approach has many benefits such as reducing the cost in constructing and maintaining an interface, superior support for query formulation, and increased portability of the interface. We focus on graph databases, but our approach is applicable to several other kinds of databases such as JSON and XML.

[1]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[2]  Shumin Zhai,et al.  Beyond Fitts' law: models for trajectory-based HCI tasks , 1997, CHI Extended Abstracts.

[3]  Shuigeng Zhou,et al.  PRAGUE: A Practical Framework for Blending Visual Subgraph Query Formulation and Query Processing , 2013 .

[4]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[5]  Niels Taatgen,et al.  Toward a unified theory of the multitasking continuum: from concurrent performance to task switching, interruption, and resumption , 2009, CHI.

[6]  Jennifer Widom,et al.  The Lowell database research self-assessment , 2003, CACM.

[7]  Beng Chin Ooi,et al.  In-Memory Big Data Management and Processing: A Survey , 2015, IEEE Transactions on Knowledge and Data Engineering.

[8]  Ambuj K. Singh,et al.  Closure-Tree: An Index Structure for Graph Queries , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[9]  Xin Wang,et al.  Distributed Graph Simulation: Impossibility and Possibility , 2014, Proc. VLDB Endow..

[10]  Jianzhong Li,et al.  Efficient Subgraph Matching on Billion Node Graphs , 2012, Proc. VLDB Endow..

[11]  Yinghui Wu,et al.  SLQ: a user-friendly graph querying system , 2014, SIGMOD Conference.

[12]  Danai Koutra,et al.  Summarizing and understanding large graphs , 2014, Stat. Anal. Data Min..

[13]  Antonella De Angeli,et al.  Quantification of interface visual complexity , 2014, AVI.

[14]  Jignesh M. Patel,et al.  Efficient aggregation for graph summarization , 2008, SIGMOD Conference.

[15]  Katharina Reinecke,et al.  Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness , 2013, CHI.

[16]  C. Lee Giles,et al.  Updating Graph Indices with a One-Pass Algorithm , 2015, SIGMOD Conference.

[17]  Keshav Pingali,et al.  Parallel graph analytics , 2016, Commun. ACM.

[18]  Ashwin Machanavajjhala,et al.  Finding connected components in map-reduce in logarithmic rounds , 2012, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[19]  Doug McMahon,et al.  JSON data management: supporting schema-less development in RDBMS , 2014, SIGMOD Conference.

[20]  Alexandre N. Tuch,et al.  The role of visual complexity and prototypicality regarding first impression of websites: Working towards understanding aesthetic judgments , 2012, Int. J. Hum. Comput. Stud..

[21]  Peter Sommerlad,et al.  Pattern-Oriented Software Architecture , 1996 .

[22]  Jeffrey Xu Yu,et al.  Connected substructure similarity search , 2010, SIGMOD Conference.

[23]  Tianyu Wo,et al.  Distributed graph pattern matching , 2012, WWW.

[24]  Evimaria Terzi,et al.  GraSS: Graph Structure Summarization , 2010, SDM.

[25]  Christos Faloutsos,et al.  GRAPHITE: A Visual Query System for Large Graphs , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[26]  Charu C. Aggarwal,et al.  Evolutionary Network Analysis , 2014, ACM Comput. Surv..

[27]  Shuigeng Zhou,et al.  GBLENDER: visual subgraph query formulation meets query processing , 2011, SIGMOD '11.

[28]  Shuigeng Zhou,et al.  PRAGUE: Towards Blending Practical Visual Subgraph Query Formulation and Query Processing , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[29]  Sourav S. Bhowmick,et al.  DB ⋈ HCI: Towards Bridging the Chasm between Graph Data Management and HCI , 2014, DEXA.

[30]  C. Lee Giles,et al.  Iterative Graph Feature Mining for Graph Indexing , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[31]  Ambuj K. Singh,et al.  Graphs-at-a-time: query language and access methods for graph databases , 2008, SIGMOD Conference.

[32]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[33]  Jeffrey Xu Yu,et al.  iGraph: A Framework for Comparisons of Disk-Based Graph Indexing Techniques , 2010, Proc. VLDB Endow..

[34]  Xiaokui Xiao,et al.  Large-scale frequent subgraph mining in MapReduce , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[35]  Sean Bechhofer,et al.  Visual complexity and aesthetic perception of web pages , 2008, SIGDOC '08.

[36]  Carl Gutwin,et al.  A Predictive Model of Human Performance With Scrolling and Hierarchical Lists , 2009, Hum. Comput. Interact..

[37]  Antonella De Angeli,et al.  Computation of Interface Aesthetics , 2015, CHI.

[38]  Lei Zou,et al.  A novel spectral coding in a large graph database , 2008, EDBT '08.

[39]  Carl Gutwin,et al.  A predictive model of menu performance , 2007, CHI.

[40]  Chengkai Li,et al.  VIIQ: Auto-Suggestion Enabled Visual Interface for Interactive Graph Query Formulation , 2015, Proc. VLDB Endow..

[41]  B. F. Castro Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal, Michael. Pattern-oriented software architecture: a system of patterns, John Wiley & Sons Ltd, 1996 , 1997 .

[42]  Sourav S. Bhowmick,et al.  ViSual: An HCI-inspired simulator for blending visual subgraph query construction and processing , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[43]  Sourav S. Bhowmick,et al.  DaVinci: Data-driven visual interface construction for subgraph search in graph databases , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[44]  Martin Hitz,et al.  Improving menu interaction: a comparison of standard, force enhanced and jumping menus , 2006, CHI.

[45]  David J. DeWitt,et al.  Scientific data management in the coming decade , 2005, SGMD.

[46]  LiJianzhong,et al.  Efficient subgraph matching on billion node graphs , 2012, VLDB 2012.