Chemically routed interpore molecular diffusion in metal-organic framework thin films

[1]  Siddarth K. Achar,et al.  Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. , 2022, Journal of chemical theory and computation.

[2]  E. Abou‐hamad,et al.  Asymmetric pore windows in MOF membranes for natural gas valorization , 2022, Nature.

[3]  O. Farha,et al.  Insights into Mass Transfer Barriers in Metal–Organic Frameworks , 2022, Chemistry of Materials.

[4]  R. Shevate,et al.  Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport. , 2022, ACS nano.

[5]  Jianqi Zhang,et al.  Hydrophilicity gradient in covalent organic frameworks for membrane distillation , 2021, Nature Materials.

[6]  F. Verpoort,et al.  Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH2 into PEG/PPG-PDMS-Based Rubbery Polymer for Efficient CO2 Separation. , 2020, ACS applied materials & interfaces.

[7]  D. Ruthven,et al.  Surface barriers and symmetry of adsorption and desorption processes , 2020, Adsorption.

[8]  G. Han,et al.  MOF-Based Membranes for Gas Separations. , 2020, Chemical reviews.

[9]  S. Ott,et al.  Transport Phenomena: Challenges and Opportunities for Molecular Catalysis in Metal–Organic Frameworks , 2020, Journal of the American Chemical Society.

[10]  Junfeng Liu,et al.  Hollow Mesoporous Metal–Organic Frameworks with Enhanced Diffusion for Highly Efficient Catalysis , 2020 .

[11]  O. Farha,et al.  Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts , 2019, Applied Catalysis A: General.

[12]  Chen‐Hao Wang,et al.  In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts. , 2019, Chemistry.

[13]  M. Tu,et al.  Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces , 2019, Nature Communications.

[14]  J. Caro,et al.  A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance , 2019, Microporous and Mesoporous Materials.

[15]  H. R. Moon,et al.  Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks , 2018, Advanced materials.

[16]  R. Krishna,et al.  Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks. , 2018, Angewandte Chemie.

[17]  F. Kapteijn,et al.  Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture , 2017 .

[18]  M. Hirscher,et al.  Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation. , 2017, Journal of the American Chemical Society.

[19]  Charles L. Brooks,et al.  CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules , 2017, J. Comput. Chem..

[20]  Anita J. Hill,et al.  Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. , 2017, Nature materials.

[21]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[22]  Nils E. R. Zimmermann,et al.  Transport in Nanoporous Materials Including MOFs: The Applicability of Fick's Laws. , 2015, Angewandte Chemie.

[23]  Hae-Kwon Jeong,et al.  Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. , 2015, Journal of the American Chemical Society.

[24]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[25]  Ryan P. Lively,et al.  Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. , 2015, Journal of the American Chemical Society.

[26]  Lars Heinke,et al.  The surface barrier phenomenon at the loading of metal-organic frameworks , 2014, Nature Communications.

[27]  F. Kapteijn,et al.  Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance , 2014 .

[28]  A. Cooper,et al.  Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. , 2013, Journal of the American Chemical Society.

[29]  A. Fujiwara,et al.  Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. , 2012, Journal of the American Chemical Society.

[30]  D. Ruthven,et al.  Diffusion in nanoporous materials , 2012 .

[31]  T. Bein,et al.  Highly oriented mesoporous silica channels synthesized in microgrooves and visualized with single-molecule diffusion. , 2012, ACS nano.

[32]  S. Sachdeva,et al.  Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges , 2012 .

[33]  M. Kondo,et al.  MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. , 2011, Dalton transactions.

[34]  A. Feldhoff,et al.  Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation , 2011 .

[35]  D. Ruthven,et al.  The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. , 2011, Journal of the American Chemical Society.

[36]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[37]  Rochus Schmid,et al.  A novel method to measure diffusion coefficients in porous metal-organic frameworks. , 2010, Physical chemistry chemical physics : PCCP.

[38]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[39]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[40]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[41]  C. Chmelik,et al.  Effect of surface modification on uptake rates of isobutane in MFI crystals: An infrared Microscopy study , 2007 .

[42]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[43]  F. Kapteijn,et al.  Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. , 2007, Journal of the American Chemical Society.

[44]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[45]  R. Krishna,et al.  Describing Binary Mixture Diffusion in Carbon Nanotubes with the Maxwell-Stefan Equations. An Investigation Using Molecular Dynamics Simulations , 2006 .

[46]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[47]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[48]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[49]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[50]  C. Joachim,et al.  Control of intramolecular electron transfer by a chemical reaction. The 4,4'-azopyridine/1,2-bis(4-pyridyl)hydrazine system , 1991 .

[51]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[52]  A. Finch,et al.  THE VAPOR PRESSURE OF METHANOL , 1955 .