New constraint on neutrino magnetic moment and neutrino millicharge from LUX-ZEPLIN dark matter search results

Elastic neutrino-electron scattering represents a powerful tool to investigate key neutrino properties. In view of the recent results released by the LUX-ZEPLIN collaboration, we provide a first determination of the limits achievable on the neutrino magnetic moment and neutrino millicharge, whose effect becomes non-negligible in some beyond the Standard Model theories. In this context, we evaluate and discuss the impact of different approximations to describe the neutrino interaction with atomic electrons. The new LUX-ZEPLIN data allows us to set a very competitive limit on the neutrino magnetic moment when compared to the other laboratory bounds, namely $\mu_{\nu}^{\rm{eff}}<1.1 \times 10^{-11} \, \mu_{\text{B}}$ at 90$\%$ C.L., which improves by a factor of 2.5 the Borexino collaboration limit and represents the second best world limit after the recent XENONnT result. Moreover, exploiting the so-called equivalent photon approximation, we obtain the most stringent limit on the neutrino millicharge, namely $|q_{\nu}^{\rm{eff}}|<1.5 \times 10^{-13} e_0$ at 90$\%$ C.L., which represents a great improvement with respect to the previous laboratory bounds.

[1]  C. Silva,et al.  Energy resolution of the LZ detector for high-energy electronic recoils , 2023, Journal of Instrumentation.

[2]  Ranjan Laha,et al.  Cosmic-ray boosted dark matter in Xe-based direct detection experiments , 2022, The European Physical Journal C.

[3]  Amir N. Khan Light new physics and neutrino electromagnetic interactions in XENONnT , 2022, Physics Letters B.

[4]  V. C. Antochi,et al.  Search for New Physics in Electronic Recoil Data from XENONnT. , 2022, Physical review letters.

[5]  Jun Yu Li,et al.  First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. , 2022, Physical review letters.

[6]  F. Dordei,et al.  Impact of the Dresden-II and COHERENT neutrino scattering data on neutrino electromagnetic properties and electroweak physics , 2022, Journal of High Energy Physics.

[7]  Yu-Feng Li,et al.  Probing neutrino magnetic moments and the Xenon1T excess with coherent elastic solar neutrino scattering , 2022, Physical Review D.

[8]  S. Vahsen,et al.  Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog , 2022, 2203.08084.

[9]  T. Yu,et al.  Detecting beyond the standard model interactions of solar neutrinos in low-threshold dark matter detectors , 2022, Physical Review D.

[10]  H. Strecker,et al.  First upper limits on neutrino electromagnetic properties from the CONUS experiment , 2022, The European Physical Journal C.

[11]  J. J. Wang,et al.  Cosmogenic production of $^{37}$Ar in the context of the LUX-ZEPLIN experiment , 2022, 2201.02858.

[12]  B. Majorovits,et al.  Direct detection of dark matter—APPEC committee report , 2021, Reports on progress in physics. Physical Society.

[13]  I. Tamborra,et al.  Grand unified neutrino spectrum at Earth: Sources and spectral components , 2019, Reviews of Modern Physics.

[14]  V. C. Antochi,et al.  Excess electronic recoil events in XENON1T , 2020, Physical Review D.

[15]  S. Jana,et al.  Large neutrino magnetic moments in the light of recent experiments , 2020, Journal of High Energy Physics.

[16]  O. Miranda,et al.  XENON1T signal from transition neutrino magnetic moments , 2020, Physics Letters B.

[17]  H. Ogawa Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I , 2020, Physics Letters B.

[18]  K. Zuber,et al.  Constraint on the axion-electron coupling constant and the neutrino magnetic dipole moment by using the tip-RGB luminosity of fifty globular clusters , 2019, 1910.10568.

[19]  J. P. Rodrigues,et al.  The LUX-ZEPLIN (LZ) experiment , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[20]  M. Pandey,et al.  Discovery potential of multiton xenon detectors in neutrino electromagnetic properties , 2019, Physical Review D.

[21]  Guo-Yuan Huang,et al.  Constraining neutrino lifetimes and magnetic moments via solar neutrinos in the large xenon detectors , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  M. Deniz,et al.  Constraints on millicharged particles with low-threshold germanium detectors at Kuo-Sheng Reactor Neutrino Laboratory , 2018, Physical Review D.

[23]  A. D. Ludovico,et al.  Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data , 2017, 1707.09355.

[24]  K. Kouzakov,et al.  Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering , 2017 .

[25]  Jiunn-Wei Chen,et al.  Low-energy electronic recoil in xenon detectors by solar neutrinos , 2016, 1610.04177.

[26]  G. Bertone,et al.  History of dark matter , 2016, Reviews of Modern Physics.

[27]  A. Serenelli Alive and well: A short review about standard solar models , 2016, The European Physical Journal A.

[28]  K. Zuber,et al.  Constraint on the magnetic dipole moment of neutrinos by the tip-RGB luminosity in ω-Centauri , 2015 .

[29]  Shun Zhou,et al.  Electromagnetic neutrinos in terrestrial experiments and astrophysics , 2015 .

[30]  Shun Zhou,et al.  Electromagnetic neutrinos in laboratory experiments and astrophysics , 2015, 1506.05387.

[31]  Chih-Liang Wu,et al.  Constraining neutrino electromagnetic properties by germanium detectors , 2014, 1411.0574.

[32]  S. O. Kepler,et al.  Constraining the neutrino magnetic dipole moment from white dwarf pulsations , 2014, 1406.6034.

[33]  K. Kouzakov,et al.  Theory of Neutrino-Atom Collisions: The History, Present Status, and BSM Physics , 2014, 1406.4999.

[34]  Chih-Liang Wu,et al.  Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-keV sensitivities , 2014, 1405.7168.

[35]  Chih-Liang Wu,et al.  Atomic ionization of germanium by neutrinos from an ab initio approach , 2014 .

[36]  C. Giunti,et al.  Neutrino electromagnetic interactions: A window to new physics , 2014, 1403.6344.

[37]  J. Erler,et al.  The Weak Neutral Current , 2013, 1303.5522.

[38]  V. Pogosov,et al.  Gemma experiment: The results of neutrino magnetic moment search , 2013, Physics of Particles and Nuclei Letters.

[39]  V. Pogosov,et al.  The Results of Search for the Neutrino Magnetic Moment in GEMMA Experiment , 2012 .

[40]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[41]  A. Reshetnyak,et al.  BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields , 2007, 0707.0386.

[42]  E. al.,et al.  Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station , 2006, hep-ex/0605006.

[43]  D. Lebrun,et al.  Final results on the neutrino magnetic moment from the MUNU experiment , 2005, hep-ex/0502037.

[44]  S. Kim,et al.  Limits on the neutrino magnetic moment using 1496 days of Super-Kamiokande-I solar neutrino data. , 2004, Physical review letters.

[45]  L. Mikaelyan Investigation of neutrino properties in experiments at nuclear reactors: Present status and prospects , 2002, hep-ph/0210047.

[46]  J. Valle,et al.  Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem , 2002, hep-ph/0208132.

[47]  D. H. White,et al.  Measurement of electron-neutrino electron elastic scattering , 2001, hep-ex/0101039.

[48]  L. Mikaelyan,et al.  Weak and magnetic inelastic scattering of antineutrinos on atomic electrons , 2000, hep-ph/0004158.

[49]  F. Vannucci Radiative decays of massive neutrinos , 1996 .

[50]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[51]  White,et al.  Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons. , 1990, Physical review. D, Particles and fields.

[52]  Robert Cousins,et al.  Clarification of the use of CHI-square and likelihood functions in fits to histograms , 1984 .

[53]  J. Nieves Electromagnetic Properties of Majorana Neutrinos , 1982 .

[54]  R. Shrock Electromagnetic Properties and Decays of Dirac and Majorana Neutrinos in a General Class of Gauge Theories , 1982 .

[55]  B. Kayser Majorana Neutrinos and their Electromagnetic Properties , 1982 .

[56]  Keh-Ning Huang Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach , 1982 .

[57]  W. Johnson,et al.  Multiconfiguration relativistic random-phase approximation. Theory , 1982 .

[58]  J. Valle,et al.  Majorana Neutrinos and Magnetic Fields , 1981 .

[59]  K. Fujikawa,et al.  Magnetic Moment of a Massive Neutrino and Neutrino-Spin Rotation , 1980 .

[60]  S. Weinberg,et al.  Cosmological lower bound on heavy-neutrino masses , 1977 .

[61]  R. K Srivastava,et al.  First results of LZ and XENONnT: A comparative study of neutrino properties and light mediators , 2022 .

[62]  Amir N. Khan New limits on neutrino electromagnetic interactions and light new physics with XENONnT , 2022 .

[63]  W. Bonivento,et al.  New constraint on neutrino magnetic moment from LZ dark matter search results , 2022 .

[64]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[65]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[66]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[67]  Chen,et al.  Study of electron-neutrino-electron elastic scattering at LAMPF. , 1993, Physical review. D, Particles and fields.

[68]  U. Fano,et al.  Many-body theory of atomic transitions , 1976 .

[69]  J. Lindhard,et al.  INTEGRAL EQUATIONS GOVERNING RADIATION EFFECTS. (NOTES ON ATOMIC COLLISIONS, III) , 1963 .