Evaluation of Lower Limb Injury Mitigation Techniques for High Velocity Impacts With the Mil-LX

Improvised Explosive Devices (IED) and landmines present a significant threat to mounted troops currently serving in Iraq and Afghanistan. As a result of these threats, a substantial number of lower limb injuries are sustained by service members. Due to this reality, a critical factor in military vehicle design is the mitigation of lower limb trauma. Past studies have shown that the standard Hybrid III and THOR-LX are not biofidelic in military axial loading conditions (up to 12 m/s). Both of these surrogates over predict axial forces compared to Post Mortem Human Specimens (PMHS) [1]. As a result, a new surrogate was developed, Mil-LX (Military Lower Extremity), that matches the PMHS response for axial loading of the lower leg up to 12 m/s [2,3]. While injury mitigation techniques, such as energy absorbing mats, foot rests, and isolation floors, have been effective in reducing lower extremity injuries in live fire test events, there are several variants of each of these methods. Additionally, it has also been suggested that the positioning of the lower limbs may affect the load sustained by these extremities [4].Copyright © 2011 by ASME