An index for deformation controllability of small-volume materials

[1]  E. Ma,et al.  Sample size effects on the large strain bursts in submicron aluminum pillars , 2012 .

[2]  E. Ma,et al.  Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles , 2012 .

[3]  Julia R. Greer,et al.  Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect , 2011 .

[4]  S. Lee,et al.  Size effect in compression of single-crystal gold microparticles , 2011 .

[5]  R. Spolenak,et al.  Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused ion-beam milling , 2011 .

[6]  J. Greer,et al.  Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. , 2010, Physical review letters.

[7]  C. Niederberger,et al.  Compression of freestanding gold nanostructures: from stochastic yield to predictable flow , 2010, Nanotechnology.

[8]  A. Ngan,et al.  Deformation of micron-sized aluminium bi-crystal pillars , 2009 .

[9]  S. Han,et al.  Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing , 2009 .

[10]  O. Kraft,et al.  Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. , 2009, Nano letters.

[11]  Michael D. Uchic,et al.  Micro-compression testing of fcc metals: A selected overview of experiments and simulations , 2009 .

[12]  Blythe G. Clark,et al.  Size effect on strength and strain hardening of small-scale [111] nickel compression pillars , 2008 .

[13]  A. Ngan,et al.  Stochastic nature of plasticity of aluminum micro-pillars , 2008 .

[14]  J. Greer,et al.  Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. , 2008, Physical review letters.

[15]  Reinhard Pippan,et al.  A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples , 2008 .

[16]  Andrew M Minor,et al.  Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. , 2008, Nature materials.

[17]  S. Zapperi,et al.  Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale , 2007, Science.

[18]  G. Pharr,et al.  Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique , 2007 .

[19]  T. Fujita,et al.  Ultra-large room-temperature compressive plasticity of a nanocrystalline metal , 2007 .

[20]  G. Ananthakrishna,et al.  Current theoretical approaches to collective behavior of dislocations , 2007 .

[21]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[22]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[23]  B. Petukhov Dynamics of the stochastic jerky motion of dislocations with application to a description of the yield strength anomaly of materials , 2004 .

[24]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[25]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[26]  J. W. Morris,et al.  Quantitative in situ nanoindentation in an electron microscope , 2001 .

[27]  Jurij Novickij,et al.  Dislocation avalanches and strain bursts in the boards of electronic equipment , 2013 .

[28]  R. V. Coleman THE GROWTH AND PROPERTIES OF WHISKERS , 1964 .