Molecular Dynamics Simulations: The Limits and Beyond

This article reviews the present state of Molecular Dynamics (MD) simulations and tries to give an outlook into future developments. First an overview is given of methods, algorithms and force fields. After considering the limitations of the standard present-day techniques, developments that reach beyond the present limitations are considered. These concern three major directions: (a) inclusion of quantum dynamics, (b) reduction of complexity by reducing the number of degrees of freedom and averaging over interactions with less important degrees of freedom, (c) reduction to mesoscopic dynamics by considering particle densities rather than positions. It is concluded that MD is a mature technique for classical simulations of all-atom systems in the nanosecond time range, but is still in its infancy in reaching reliably into longer time scales.

[1]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[2]  Sharon Hammes-Schiffer,et al.  MULTICONFIGURATIONAL MOLECULAR DYNAMICS WITH QUANTUM TRANSITIONS : MULTIPLE PROTON TRANSFER REACTIONS , 1996 .

[3]  H. Berendsen,et al.  Quantum Dynamics Simulation of a Small Quantum System Embedded in a Classical Environment , 1996 .

[4]  Minoru Saito,et al.  Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation , 1994 .

[5]  P. Dutton,et al.  Biological Electron Transfer: Measurement, Mechanism, Engineering Requirements , 1996 .

[6]  K. Tasaki,et al.  Observations concerning the treatment of long‐range interactions in molecular dynamics simulations , 1993, J. Comput. Chem..

[7]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[8]  M. Karplus,et al.  Deformable stochastic boundaries in molecular dynamics , 1983 .

[9]  Fumio Hirata,et al.  Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water , 1990 .

[10]  David van der Spoel,et al.  Towards phase transferable potential functions: Methodology and application to nitrogen , 1995, The Journal of Chemical Physics.

[11]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[12]  H. Berendsen,et al.  Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations , 1998, Proteins.

[13]  K. Esselink A comparison of algorithms for long-range interactions , 1995 .

[14]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[15]  Arieh Warshel,et al.  Computer Modeling of Chemical Reactions in Enzymes and Solutions , 1991 .

[16]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[17]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[18]  Mark E. Tuckerman,et al.  Molecular dynamics algorithm for multiple time scales: Systems with long range forces , 1991 .

[19]  Terry R. Stouch,et al.  Effects of Switching Functions on the Behavior of Liquid Water in Molecular Dynamics Simulations , 1994 .

[20]  J. Mccammon,et al.  Quantum-Classical Molecular Dynamics. Models and Applications , 1996 .

[21]  Kent R. Wilson,et al.  Thermodynamics and quantum corrections from molecular dynamics for liquid water , 1982 .

[22]  R. R. Ernst,et al.  Quantum mechanical exchange in a transition metal hydride complex: NMR data for [cp(PPh3)IrH3]+ fitted by a two-dimensional model , 1997 .

[23]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[24]  H J Berendsen,et al.  An efficient method for sampling the essential subspace of proteins. , 1996, Journal of biomolecular structure & dynamics.

[25]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[26]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[27]  James Andrew McCammon,et al.  Applications of quantum-classical and quantum-stochastic molecular dynamics simulations for proton transfer processes , 1994 .

[28]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[29]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[30]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[31]  W. Thiel,et al.  Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches , 1996 .

[32]  Olle Teleman An Efficient Way to Conserve the Total Energy in Molecular Dynamics Simulations; Boundary Effects on Energy Conservation and Dynamic Properties , 1988 .

[33]  D. Hadzi Theoretical treatments of hydrogen bonding , 1997 .

[34]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[35]  Piero Procacci,et al.  A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions , 1996 .

[36]  Ulrich Essmann,et al.  Effect of the treatment of long‐range forces on the dynamics of ions in aqueous solutions , 1995 .

[37]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[38]  S. Hammes-Schiffer,et al.  Vibrationally Enhanced Proton Transfer , 1995 .

[39]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[40]  H. Schreiber,et al.  Molecular dynamics studies of solvated polypeptides: Why the cut-off scheme does not work , 1992 .

[41]  P. Weiner,et al.  Computer Simulation of Biomolecular Systems , 1997 .

[42]  G. Martyna,et al.  Adiabatic path integral molecular dynamics methods. II. Algorithms , 1996 .

[43]  Calculation of noise distribution in mesoscopic dynamics models for phase separation of multicomponent complex fluids , 1996 .

[44]  H. Berendsen,et al.  TREATMENT OF INELASTIC-COLLISIONS OF A PARTICLE WITH A QUANTUM HARMONIC-OSCILLATOR BY DENSITY-MATRIX EVOLUTION , 1994 .

[45]  Arieh Warshel,et al.  Computer simulations of enzymatic reactionsCurrent Opinion in Structural Biology 1992, 2:230236 , 1992 .

[46]  Carnevali,et al.  Localization, hopping, and diffusion of electrons in molten salts. , 1987, Physical review letters.

[47]  P. Rossky,et al.  The hydrated electron: quantum simulation of structure, spectroscopy, and dynamics , 1988 .

[48]  H. Berendsen,et al.  CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES , 1995 .

[49]  Mark E. Tuckerman,et al.  Molecular dynamics algorithm for multiple time scales: Systems with disparate masses , 1991 .

[50]  Andrea Amadei,et al.  Essential degrees of freedom of proteins , 1995 .

[51]  Gregory A. Voth,et al.  The quantum dynamics of an excess proton in water , 1996 .

[52]  H. Berendsen,et al.  Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme , 1998, Proteins.

[53]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[54]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[55]  Peter A. Kollman,et al.  Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation , 1993, J. Comput. Chem..

[56]  D. Devault,et al.  Quantum mechanical tunnelling in biological systems. , 1980, Quarterly reviews of biophysics.

[57]  W. Briels,et al.  The reactive flux method applied to complex isomerization reactions: Using the unstable normal mode as a reaction coordinate , 1997 .

[58]  S. Hammes-Schiffer,et al.  Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics of infrequent events , 1995 .

[59]  N. Maurits,et al.  Simple numerical quadrature rules for Gaussian chain polymer density functional calculations in 3D and implementation on parallel platforms , 1996 .

[60]  Kenneth M. Merz,et al.  An examination of a density functional/molecular mechanical coupled potential , 1995, J. Comput. Chem..

[61]  P. Tavan,et al.  A structure adapted multipole method for electrostatic interactions in protein dynamics , 1994 .

[62]  Scott F. Smith,et al.  Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution , 1985 .

[63]  AB INITIO MOLECULAR DYNAMICS STUDY OF METALLOCENE-CATALYZED ETHYLENE POLYMERIZATION , 1994 .

[64]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[65]  G. Isac Models and applications , 1992 .

[66]  Joshua Jortner,et al.  Modelling of Biomolecular Structures and Mechanisms , 1995 .

[67]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[68]  Mark A. Ratner,et al.  Time‐dependent self‐consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules , 1982 .

[69]  M. J. Field,et al.  The Simulation of Chemical Reactions , 1995 .

[70]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[71]  Herman J. C. Berendsen,et al.  Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations , 1996 .

[72]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[73]  William A. Goddard,et al.  Optimal spline cutoffs for Coulomb and van der Waals interactions , 1992 .

[74]  C. Sander,et al.  An effective solvation term based on atomic occupancies for use in protein simulations , 1993 .

[75]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[76]  B. Widom,et al.  Potential-distribution theory and the statistical mechanics of fluids , 1982 .

[77]  Herman J. C. Berendsen,et al.  Simulation of Water Transport through a Lipid Membrane , 1994 .

[78]  H. Berendsen,et al.  Essential dynamics of the cellular retinol-binding protein--evidence for ligand-induced conformational changes. , 1995, Protein engineering.

[79]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[80]  K. Schulten Curve Crossing in a Protein: Coupling of the Elementary Quantum Process to Motions of the Protein , 1996 .

[81]  Martin Neumann,et al.  Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations , 1984 .

[82]  G Vriend,et al.  The essential dynamics of thermolysin: Confirmation of the hinge‐bending motion and comparison of simulations in vacuum and water , 1995, Proteins.

[83]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[84]  Kenneth M. Merz Computer simulation of enzymatic reactions , 1993 .

[85]  John W. Perram,et al.  The Physics of Superionic Conductors and Electrode Materials , 1985, July 1.

[86]  C. Schütte,et al.  Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .

[87]  M K Gilson,et al.  Theory of electrostatic interactions in macromolecules. , 1995, Current opinion in structural biology.

[88]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[89]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[90]  D. Frenkel Free-energy computation and first-order phase transitions , 1986 .

[91]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[92]  Hans De Raedt,et al.  Product formula algorithms for solving the time dependent Schrödinger equation , 1987 .

[93]  P. Pechukas,et al.  Time-Dependent Semiclassical Scattering Theory. II. Atomic Collisions , 1969 .

[94]  A. H. Juffer,et al.  DYNAMIC SURFACE BOUNDARY-CONDITIONS - A SIMPLE BOUNDARY MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS , 1993 .

[95]  G. Voth,et al.  A path integral study of electronic polarization and nonlinear coupling effects in condensed phase proton transfer reactions , 1994 .

[96]  S. Hammes-Schiffer,et al.  Proton transfer in solution: Molecular dynamics with quantum transitions , 1994 .

[97]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[98]  H. Berendsen,et al.  Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. , 1996, Biophysical journal.

[99]  B. Brooks,et al.  The effects of truncating long‐range forces on protein dynamics , 1989, Proteins.

[100]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[101]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[102]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[103]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[104]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[105]  T. Darden,et al.  Atomic-level accuracy in simulations of large protein crystals. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  H. Berendsen,et al.  Approach to nonadiabatic transitions by density matrix evolution and molecular dynamics simulations , 1996 .

[107]  Jianshu Cao,et al.  A unified framework for quantum activated rate processes. I. General theory , 1996 .

[108]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[109]  Martin Neumann,et al.  Dipole moment fluctuation formulas in computer simulations of polar systems , 1983 .

[110]  H. Berendsen,et al.  Model‐free methods of analyzing domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme , 1997, Proteins.

[111]  William H. Press,et al.  Numerical recipes , 1990 .

[112]  H. Berendsen,et al.  Molecular Dynamics with Constraints , 1983 .

[113]  O. Steinhauser,et al.  On the calculation of the frequency-dependent dielectric constant in computer simulations , 1983 .

[114]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[115]  Martin J. Field,et al.  Free energy perturbation method for chemical reactions in the condensed phase: a dynamic approach based on a combined quantum and molecular mechanics potential , 1987 .

[116]  Wilfred F. van Gunsteren,et al.  A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods for Calculating Electrostatic Interactions in Periodic Molecular Systems , 1994 .

[117]  T. Straatsma,et al.  Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations , 1988 .

[118]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[119]  H J Berendsen,et al.  Bio-Molecular Dynamics Comes of Age , 1996, Science.

[120]  James Andrew McCammon,et al.  Extended Hellmann-Feynman theorem for non-stationary states and its application in quantum-classical molecular dynamics simulations , 1994 .

[121]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[122]  P. Ehrenfest Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik , 1927 .

[123]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[124]  H J Berendsen,et al.  Toward an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin. , 1996, Journal of biomolecular structure & dynamics.

[125]  Gillan Quantum simulation of hydrogen in metals. , 1988, Physical review letters.

[126]  Glenn J. Martyna,et al.  Adiabatic path integral molecular dynamics methods. I. Theory , 1996 .

[127]  N. Maurits,et al.  Mesoscopic dynamics of copolymer melts: From density dynamics to external potential dynamics using nonlocal kinetic coupling , 1997 .

[128]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[129]  O. Steinhauser,et al.  Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. , 1992, Biochemistry.

[130]  R. Wood Continuum electrostatics in a computational universe with finite cutoff radii and periodic boundary conditions: Correction to computed free energies of ionic solvation , 1995 .

[131]  H. Berendsen,et al.  Dynamical simulation of a quantum harmonic oscillator in a noble-gas bath by density-matrix evolution. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[132]  Sharon Hammes-Schiffer,et al.  An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains , 1997 .

[133]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[134]  M. Field,et al.  Quantum mechanical simulation methods for studying biological systems : Les Houches Workshop, May 2-7, 1995 , 1996 .

[135]  P. Pechukas,et al.  TIME-DEPENDENT SEMICLASSICAL SCATTERING THEORY. I. POTENTIAL SCATTERING. , 1969 .

[136]  Ronald M. Levy,et al.  Molecular dynamics simulations of water with Ewald summation for the long range electrostatic interactions , 1991 .

[137]  Herman J. C. Berendsen,et al.  QUANTUM SIMULATION OF REACTION DYNAMICS BY DENSITY-MATRIX EVOLUTION , 1993 .

[138]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[139]  Janez Mavri,et al.  Simulation of slow reaction with quantum character: Neutral hydrolysis of carboxylic ester , 1999 .

[140]  DANIEL I. OKUNBOR,et al.  Canonical numerical methods for molecular dynamics simulations , 1994, J. Comput. Chem..

[141]  W F van Gunsteren,et al.  A structure refinement method based on molecular dynamics in four spatial dimensions. , 1993, Journal of molecular biology.

[142]  J. Valleau,et al.  A Guide to Monte Carlo for Statistical Mechanics: 2. Byways , 1977 .

[143]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[144]  Marc F. Lensink,et al.  Simulation of slow reaction with quantum character: Neutral hydrolysis of carboxylic ester , 1999, J. Comput. Chem..

[145]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[146]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[147]  W. Vangunsteren,et al.  INFLUENCE OF SOLVENT ON INTRAMOLECULAR PROTON-TRANSFER IN HYDROGEN MALONATE - MOLECULAR-DYNAMICS SIMULATION STUDY OF TUNNELING BY DENSITY-MATRIX EVOLUTION AND NONEQUILIBRIUM SOLVATION , 1993 .