The NASA MODIS-VIIRS Continuity Cloud Optical Properties Products

[1]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[2]  S. Platnick,et al.  Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products , 2020, Atmospheric Measurement Techniques.

[3]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  P. Yang,et al.  Temperature dependence of ice optical constants: Implications for simulating the single-scattering properties of cold ice clouds , 2011 .

[5]  S. Platnick,et al.  MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. , 2015, Atmospheric measurement techniques.

[6]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[7]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Guangyu Zhao,et al.  Scale effect on statistics of the macrophysical properties of trade wind cumuli over the tropical western Atlantic during RICO , 2008 .

[9]  Dudley A. Williams,et al.  Optical properties of water in the near infrared. , 1974 .

[10]  William L. Smith,et al.  Improved Cloud Motion Wind Vector and Altitude Assignment Using VAS. , 1983 .

[11]  Steven A. Ackerman,et al.  The Continuity MODIS-VIIRS Cloud Mask , 2020, Remote. Sens..

[12]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[13]  Benjamin Marchant,et al.  The CHIMAERA system for retrievals of cloud top, optical and microphysical properties from imaging sensors , 2020, Comput. Geosci..

[14]  Steven Platnick,et al.  An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands , 2011 .

[15]  Steven Platnick,et al.  Remote sensing of radiative and microphysical properties of clouds during TC4: Results from MAS, MASTER, MODIS, and MISR , 2010 .

[16]  Michael J. Pavolonis,et al.  Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology , 2009 .

[17]  M. Lebsock,et al.  Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans , 2015, Journal of geophysical research. Atmospheres : JGR.

[18]  Y. Kaufman,et al.  Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space , 1995 .

[19]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[20]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Stephen J. Lord,et al.  The New Global Operational Analysis System at the National Meteorological Center , 1991 .

[22]  Seiji Kato,et al.  Estimate of satellite‐derived cloud optical thickness and effective radius errors and their effect on computed domain‐averaged irradiances , 2006 .

[23]  Steven Platnick,et al.  Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band , 2010 .

[24]  Nipa Phojanamongkolkij,et al.  Achieving Climate Change Absolute Accuracy in Orbit , 2013 .

[25]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  W. Paul Menzel,et al.  MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results , 2008 .

[27]  W. Paul Menzel,et al.  MODIS Cloud-Top Property Refinements for Collection 6 , 2012 .

[28]  Robert E. Holz,et al.  Derivation of Shortwave Radiometric Adjustments for SNPP and NOAA-20 VIIRS for the NASA MODIS-VIIRS Continuity Cloud Products , 2020, Remote. Sens..

[29]  Bryan A. Baum,et al.  Summary of the Fourth Cloud Retrieval Evaluation Workshop , 2015 .

[30]  Alan H. Strahler,et al.  Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products , 2010 .

[31]  Steven Platnick,et al.  Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms , 2014 .

[32]  Michael J. Pavolonis,et al.  Daytime Cloud Overlap Detection from AVHRR and VIIRS , 2004 .

[33]  Zhibo Zhang,et al.  A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations , 2020 .

[34]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[35]  Dudley H. Williams,et al.  Optical constants of water in the infrared , 1975 .

[36]  Bryan A. Baum,et al.  Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um , 2013 .

[37]  S. Twomey,et al.  Spectral Reflectance of Clouds in the Near-Infrared: Comparison of Measurements and Calculations , 1982 .

[38]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[39]  B. Cairns,et al.  Global Statistics of Ice Microphysical and Optical Properties at Tops of Optically Thick Ice Clouds , 2020, Journal of Geophysical Research: Atmospheres.

[40]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[41]  Robert E. Holz,et al.  Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction , 2020, Remote. Sens..

[42]  S. Wanzong,et al.  Using Sounder Data to Improve Cirrus Cloud Height Estimation from Satellite Imagers , 2019, Journal of Atmospheric and Oceanic Technology.

[43]  Yaping Zhou,et al.  Cloud Products from the Earth Polychromatic Imaging Camera (EPIC): Algorithms and Initial Evaluation. , 2018, Atmospheric measurement techniques.

[44]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[45]  S. Platnick,et al.  Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 μm water vapor absorption band. , 2016, Atmospheric measurement techniques.

[46]  Steven Platnick,et al.  Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: Algorithm and retrieval uncertainties , 2010 .

[47]  Stefan Benz,et al.  Mid-infrared extinction spectra and optical constants of supercooled water droplets. , 2005, The journal of physical chemistry. A.

[48]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[49]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[50]  Steven Platnick,et al.  Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC). , 2016, Atmospheric measurement techniques.

[51]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[52]  Steven Platnick,et al.  Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data , 2004 .