Multivariate refinable Hermite interpolant

We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We study also a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to dierent dilation matrices and symmetry groups are constructed and analyzed. Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g. the Powell-Sabin scheme.) We make

[1]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[2]  Bin Han,et al.  Hermite interpolants and biorthogonal multiwavelets with arbitrary order of vanishing moments , 1999, Optics & Photonics.

[3]  S. Riemenschneider,et al.  Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .

[4]  Y. Meyer Wavelets and Operators , 1993 .

[5]  Nira Dyn,et al.  Analysis of Hermite-interpolatory subdivision schemes , 1999 .

[6]  Bin Han THE INITIAL FUNCTIONS IN A CASCADE ALGORITHM , 2002 .

[7]  Nicholas S. Sapidis Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design , 1994, Designing Fair Curves and Surfaces.

[8]  Amos Ron Smooth refinable functions provide good approximation orders , 1997 .

[9]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[10]  Ding-Xuan Zhou Multiple Refinable Hermite Interpolants , 2000 .

[11]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[12]  Bin Han,et al.  Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets , 2001, J. Approx. Theory.

[13]  Joachim Rosenthal,et al.  Fourth special issue on linear systems and control - Preface , 2002 .

[14]  A. Lewis,et al.  Two numerical methods for optimizing matrix stability , 2002 .

[15]  Nira Dyn,et al.  A Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element , 1999 .

[16]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[17]  Jean-Louis Merrien,et al.  Dyadic Hermite interpolation on a rectangular mesh , 1999, Adv. Comput. Math..

[18]  Jean-Louis Merrien Dyadic Hermite interpolants on a triangulation , 2005, Numerical Algorithms.

[19]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[20]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[21]  Jean-Louis Merrien A family of Hermite interpolants by bisection algorithms , 2005, Numerical Algorithms.

[22]  M LaneJeffrey,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980 .

[23]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[24]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[25]  Bin Han,et al.  Design of Hermite Subdivision Schemes Aided by Spectral Radius Optimization , 2003, SIAM J. Sci. Comput..

[26]  R. Barnhill,et al.  Polynomial interpolation to boundary data on triangles , 1975 .

[27]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[28]  Thomas P. Yu,et al.  Approximation order/smoothness tradeoff in Hermite subdivision schemes , 2001, SPIE Optics + Photonics.

[29]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[30]  C. Heil,et al.  Accuracy of Lattice Translates of Several Multidimensional Refinable Functions , 1998 .

[31]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[32]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[33]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[34]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[35]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[36]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[37]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.