Toward a Flame Embedding Model for Turbulent Combustion Simulation

Combustion in turbulent flows may take the form of a thin flame wrapped around vortical structures. For this regime, the flame embedding approach seeks to decouple computations of the outer nonreacting flow and the combustion zone by discretizing the flame surface into a number of elemental flames, each incorporating the local impact of unsteady flow-flame interaction. An unsteady strained laminar flame solver, based on a boundary-layer approximation of combustion in a time-dependent stagnation-point potential flow, is proposed as an elemental flame model. To validate the concept, two-dimensional simulations of premixed flame-vortex interactions are performed for a matrix of vortex strengths and length scales, and a section of the flame is selected for comparison with the flame embedding model results. Results show that using the flame leading-edge strain rate gives reasonable agreement in the cases of low strain rate and weak strain rate gradient within the flame structure. This agreement deteriorates substantially when both are high. We propose two different schemes, both based on averaging the strain rate across the flame structure, and demonstrate that agreement between the one-dimensional model and the two-dimensional simulation greatly improves when the actual strain rate at the reaction zone of the one-dimensional flame is made to match that of the two-dimensional flame.

[1]  Thierry Poinsot,et al.  Diagrams of premixed turbulent combustion based on direct simulation , 1991 .

[2]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[3]  Habib N. Najm,et al.  Premixed flame response to unsteady strain-rate and curvature , 1996 .

[4]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[5]  G. Dixon-Lewis,et al.  Structure of laminar flames , 1991 .

[6]  F. Spellman Combustion Theory , 2020 .

[7]  Frauke Pohlki,et al.  The Mechanism of the [Cp2 TiMe2 ]-Catalyzed Intermolecular Hydroamination of Alkynes. , 2001, Angewandte Chemie.

[8]  F. Egolfopoulos Dynamics and structure of unsteady, strained, laminar premixed flames , 1994 .

[9]  Ishwar K. Puri,et al.  A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air , 1988 .

[10]  Elaine S. Oran,et al.  Numerical Approaches to Combustion Modeling , 1991 .

[11]  Response of stoichiometric and rich premixed methane–air flames to unsteady strain rate and curvature , 1999 .

[12]  J. Boris,et al.  Length Scales in Laminar and Turbulent Flames , 1991 .

[13]  Forman A. Williams,et al.  Structure of laminar flamelets in premixed turbulent flames , 1982 .

[14]  H. E. Kallmann,et al.  Transient Response , 1945, Proceedings of the IRE.

[15]  Y. Marzouk,et al.  Dynamic Response of Strained Premixed Flames to Equivalence Ratio Gradients , 2000 .

[16]  Hong G. Im,et al.  EFFECTS OF FLOW TRANSIENTS ON THE BURNING VELOCITY OF LAMINAR HYDROGEN/AIR PREMIXED FLAMES , 2000 .

[17]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[18]  Habib N. Najm,et al.  Planar laser-induced fluorescence imaging of flame heat release rate , 1998 .

[19]  Habib N. Najm,et al.  Regular Article: A Semi-implicit Numerical Scheme for Reacting Flow , 1999 .

[20]  Fokion N. Egolfopoulos,et al.  Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response , 1996, Journal of Fluid Mechanics.

[21]  Y. Marzouk The effect of flow and mixture inhomogeneity on the dynamics of strained flames , 1999 .

[22]  Jacqueline H. Chen,et al.  The mechanism of mutual annihilation of stoichiometric premixed methane-air flames , 1996 .

[23]  J. H. Whitelaw,et al.  Extinction of turbulent counterflow flames under periodic strain , 2000 .

[24]  J. Ferziger,et al.  Unsteady strained premixed laminar flames , 1990 .

[25]  Constantine A. Petrov Numerical simulation of reacting flows with complex chemistry using flame embedding , 1996 .

[26]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[27]  J. Warnatz,et al.  Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets , 1991 .

[28]  Ahmed F. Ghoniem,et al.  Dynamics and Structure of Interacting Nonpremixed Flames , 1998 .

[29]  N. Peters Laminar flamelet concepts in turbulent combustion , 1988 .

[30]  Thierry Poinsot,et al.  An unsteady laminar flamelet model for non-premixed combustion , 2000 .

[31]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[32]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[33]  H. Najm,et al.  A numerical and experimental investigation of premixed methane-air flame transient response , 2000 .

[34]  A. Ghoniem,et al.  The transient response of strained laminar-premixed flames , 1995 .

[35]  James A. Miller,et al.  A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane- , 1988 .

[36]  Omar M. Knio,et al.  Effect of steady and periodic strain on unsteady flamelet combustion , 1992 .

[37]  P. S. Wyckoff,et al.  Transient Response of Premixed Methane-Air Flames , 1997 .

[38]  P. S. Wyckoff,et al.  On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate , 1998 .

[39]  O. Knio,et al.  Lagrangian simulation of a thin non-premixed flame in the field of an asymmetric layer , 1996 .

[40]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[41]  Chung King Law,et al.  Response of counterflow premixed flames to oscillating strain rates , 1996 .

[42]  Jacqueline H. Chen,et al.  The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion , 1999 .

[43]  Nasser Darabiha,et al.  Transient Behaviour of Laminar Counterflow Hydrogen-Air Diffusion Flames with Complex Chemistry , 1992 .

[44]  Q. Nguyen,et al.  The Time Evolution of a Vortex-Flame Interaction Observed via Planar Imaging of CH and OH , 1996 .

[45]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[46]  Andrew E. Lutz,et al.  OPPDIF: A Fortran program for computing opposed-flow diffusion flames , 1997 .

[47]  Hong G. Im,et al.  Chemical response of methane/air diffusion flames to unsteady strain rate , 1999 .

[48]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[49]  Tarek Echekki,et al.  Unsteady strain rate and curvature effects in turbulent premixed methane-air flames , 1996 .