Multiparticle entanglement purification for two-colorable graph states (20 pages)

We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes, e.g., cluster states, Greenberger-Horne-Zeilinger states, and code words of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.