Subsonic and Supersonic Jet Noise Predictions from Statistical Source Models

Subsonicandsupersonicjetnoiseisdeterminednumerically from statisticalsourcemodels.Thegoalistodevelop prediction methods for high-speed jet noise for application to aeronautical and space transportation systems. In this framework, a combination of a k-≤ turbulence closure with an acoustic analogy provides an interesting way to compute such radiated acoustic e elds. Three acoustic analogies are investigated. First, the classical Lighthill theory in combination with Ribner' s results is applied to calculate jet mixing noise. The second method relies on the Goldstein -Howes convected wave equation, which is used to improve the predicted supersonic jet mixing noise in the upstream direction. It is necessary to properly account for acoustic wave convection, and then, one e nds that the Doppler factor features an exponent of i 3 in the associated power law. A model based on the Ffowcs Williams-MaidanikanalysisthenisdevelopedtoestimatetheMach-wavenoisecomponentthatdominatesforward arc radiation when theconvection Mach number is supersonic. Comparisons between aerodynamicand calculated acoustic results on the one hand, and available measurements on the other hand, are carried out. It is shown that the last two models yield improved supersonic jet mixing noise predictions.

[1]  P. A. Lush,et al.  Measurements of subsonic jet noise and comparison with theory , 1971, Journal of Fluid Mechanics.

[2]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[3]  J. E. Ffowcs Williams,et al.  The Mach wave field radiated by supersonic turbulent shear flows , 1965, Journal of Fluid Mechanics.

[4]  Sébastien Candel,et al.  Application of a κ‐ε turbulence model to the prediction of noise for simple and coaxial free jets , 1995 .

[5]  B. Launder,et al.  THE NUMERICAL COMPUTATION OF TURBULENT FLOW , 1974 .

[6]  John M. Seiner,et al.  The effects of temperature on supersonic jet noise emission , 1992 .

[7]  H. K. Tanna,et al.  An experimental study of jet noise part I: Turbulent mixing noise , 1977 .

[8]  Parviz Moin,et al.  The scattering of sound waves by a vortex: numerical simulations and analytical solutions , 1994, Journal of Fluid Mechanics.

[9]  Marvin E. Goldstein,et al.  New aspects of subsonic aerodynamic noise theory , 1973 .

[10]  Peter D. Dean,et al.  The Generation and Radiation of Supersonic Jet Noise. Volume 3. Turbulent Mixing Noise Data , 1976 .

[11]  E. A. Krejsa,et al.  Computation of supersonic jet mixing noise for an axisymmetric convergent-divergent nozzle , 1994 .

[12]  M. Goldstein,et al.  Effect of anisotropic turbulence on aerodynamic noise. [Lighthill theory mathematical model for axisymmetric turbulence] , 1973 .

[13]  A STATISTICAL DESCRIPTION OF SUPERSONIC JET MIXING NOISE , 1997 .

[14]  Christoph W. Ueberhuber,et al.  Numerical Computation 2 , 1997 .

[15]  Otto Zeman,et al.  Dilatation dissipation: The concept and application in modeling compressible mixing layers , 1990 .

[16]  J. Laufer,et al.  Experiments on Supersonic Jet Noise , 1976 .

[17]  Sébastien Candel,et al.  Jet noise predictions using a k-epsilon turbulence model , 1993 .

[18]  Sébastien Candel,et al.  Prediction of supersonic jet noise from a statistical acoustic model and a compressible turbulence closure , 1996 .

[19]  Wolfgang Kollmann,et al.  Prediction Methods for Turbulent Flows , 1980 .

[20]  Michael Fisher,et al.  The characteristics of the turbulence in the mixing region of a round jet , 1963, Journal of Fluid Mechanics.

[21]  Christopher K. W. Tam,et al.  Turbulent mixing noise from supersonic jets , 1993 .

[22]  H. S. Ribner,et al.  Quadrupole correlations governing the pattern of jet noise , 1967, Journal of Fluid Mechanics.

[23]  Predicting aerodynamic sound utilizing a two-point, two-time turbulence theory , 1981 .

[24]  Parviz Moin,et al.  Direct computation of the sound from a compressible co-rotating vortex pair , 1992 .

[25]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Noise Source Mechanisms , 1992 .

[27]  Eugene A. Krejsa,et al.  Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model , 1992 .

[28]  R. Temam Navier-Stokes Equations , 1977 .

[29]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[30]  Computation of noise generation by turbulence in internal flows , 1998 .

[31]  T. Colonius Direct computation of aerodynamic sound , 1994 .

[32]  Sébastien Candel,et al.  Stochastic approach to noise modeling for free turbulent flows , 1994 .

[33]  Sébastien Candel,et al.  Computation of noise generation and propagation for free and confined turbulent flows , 1996 .