Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared.

Two-dimensional (2D) materials have drawn tremendous attention in recent years. Being atomically thin, stacked with van der Waals force and free of surface chemical dangling bonds, 2D materials exhibit several distinct physical properties. To date, 2D materials include graphene, transition metal dichalcogenides (TMDS), black phosphorus, black P(1-x) Asx , boron nitride (BN) and so forth. Owing to their various bandgaps, 2D materials have been utilized for photonics and optoelectronics. Photodetectors based on 2D materials with different structures and detection mechanisms have been established and present excellent performance. In this Review, localized field enhanced 2D material photodetectors (2DPDs) are introduced with sensitivity over the spectrum from ultraviolet, visible to infrared in the sight of the influence of device structure on photodetector performance instead of directly illustrating the detection mechanisms. Six types of localized fields are summarized. They are: ferroelectric field, photogating electric field, floating gate induced electrostatic field, interlayer built-in field, localized optical field, and photo-induced temperature gradient field, respectively. These localized fields are proved to effectively promote the detection ability of 2DPDs by suppressing background noise, enhancing optical absorption, improving electron-hole separation efficiency, amplifying photoelectric gain and/or extending the detection range.

[1]  Chao Xie,et al.  Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene , 2017 .

[2]  Wei Lu,et al.  Arrayed Van Der Waals Broadband Detectors for Dual‐Band Detection , 2017, Advanced materials.

[3]  Jinsong Huang,et al.  Detecting 100 fW cm−2 Light with Trapped Electron Gated Organic Phototransistors , 2017, Advanced materials.

[4]  Xianying Wang,et al.  High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets , 2017 .

[5]  A. Ferrari,et al.  Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance , 2016, Nature Communications.

[6]  Guangjian Wu,et al.  Optoelectronic Properties of Few-Layer MoS2 FET Gated by Ferroelectric Relaxor Polymer. , 2016, ACS applied materials & interfaces.

[7]  X. Duan,et al.  Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers , 2016, Nature Communications.

[8]  J. Ho,et al.  High‐Performance Ferroelectric Polymer Side‐Gated CdS Nanowire Ultraviolet Photodetectors , 2016 .

[9]  C. Wright,et al.  Fast High‐Responsivity Few‐Layer MoTe2 Photodetectors , 2016 .

[10]  Yongsuk Choi,et al.  Multibit MoS2 Photoelectronic Memory with Ultrahigh Sensitivity , 2016, Advanced materials.

[11]  Daniel Schall,et al.  Controlled Generation of a p-n Junction in a Waveguide Integrated Graphene Photodetector. , 2016, Nano letters.

[12]  P. Ajayan,et al.  Active Control of Plasmon–Exciton Coupling in MoS2–Ag Hybrid Nanostructures , 2016 .

[13]  Guangjian Wu,et al.  Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect , 2016, Nanotechnology.

[14]  Guangjian Wu,et al.  Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector , 2016 .

[15]  Wei Lu,et al.  Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. , 2016, Nano letters.

[16]  J. Ho,et al.  High‐Sensitivity Floating‐Gate Phototransistors Based on WS2 and MoS2 , 2016 .

[17]  Weida Hu,et al.  High-quality infrared imaging with graphene photodetectors at room temperature. , 2016, Nanoscale.

[18]  Peng Zhou,et al.  Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. , 2016, ACS nano.

[19]  L. Bian,et al.  Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer , 2016, Nanotechnology.

[20]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[21]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[22]  Yongqiang Yu,et al.  Ultrafast, Broadband Photodetector Based on MoSe2/Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode , 2016, Advanced science.

[23]  Sungjoo Lee,et al.  A High‐Performance WSe2/h‐BN Photodetector using a Triphenylphosphine (PPh3)‐Based n‐Doping Technique , 2016, Advanced materials.

[24]  V. Garcia,et al.  Tunnel electroresistance through organic ferroelectrics , 2016, Nature Communications.

[25]  L. Luo,et al.  A Surface Plasmon Enhanced Near‐Infrared Nanophotodetector , 2016 .

[26]  Lain-Jong Li,et al.  Heterostructured WS2/CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity , 2016, Advanced materials.

[27]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[28]  F. Xia,et al.  Optoelectronic devices based on two-dimensional transition metal dichalcogenides , 2016, Nano Research.

[29]  Hyoungsub Kim,et al.  Trap-induced photoresponse of solution-synthesized MoS2. , 2016, Nanoscale.

[30]  Weida Hu,et al.  Side‐Gated In2O3 Nanowire Ferroelectric FETs for High‐Performance Nonvolatile Memory Applications , 2016, Advanced science.

[31]  Hao Jiang,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[32]  Zhiyong Fan,et al.  When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors. , 2016, Nano letters.

[33]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[34]  S. Lau,et al.  High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering , 2016, Scientific Reports.

[35]  Wei Zhou,et al.  Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. , 2016, Nano letters.

[36]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[37]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[38]  Xiaosheng Fang,et al.  Nanostructured Photodetectors: From Ultraviolet to Terahertz , 2016, Advanced materials.

[39]  F. Miao,et al.  High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection , 2015, 1512.06515.

[40]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[41]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[42]  A. Chandrakasan,et al.  Graphene-Based Thermopile for Thermal Imaging Applications. , 2015, Nano letters.

[43]  Kai Xu,et al.  Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. , 2015, Nano letters.

[44]  Y. Hong,et al.  Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector , 2015, Scientific Reports.

[45]  J. Chu,et al.  Highly sensitive phototransistor based on GaSe nanosheets , 2015 .

[46]  Andrey Klots,et al.  Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2. , 2015, Nano letters.

[47]  Qingsheng Zeng,et al.  Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. , 2015, Nano letters.

[48]  G. Yang,et al.  Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. , 2015, Nanoscale.

[49]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[50]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[51]  Du Xiang,et al.  Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. , 2015, ACS nano.

[52]  B. Hong,et al.  High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers , 2015, Scientific Reports.

[53]  W. Cao,et al.  Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response† , 2015 .

[54]  Sungjoo Lee,et al.  High‐Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self‐Assembled Monolayer Doping , 2015 .

[55]  J. Shim,et al.  Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices. , 2015, Nano letters.

[56]  M. Ge,et al.  Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties , 2015, Advanced materials.

[57]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[58]  Jiansheng Jie,et al.  MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–Near Infrared Photodetectors , 2015 .

[59]  Wei Lu,et al.  Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. , 2015, Small.

[60]  Wei Jiang,et al.  Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors , 2015, Nature Communications.

[61]  Zhenxing Wang,et al.  High-performance flexible photodetectors based on GaTe nanosheets. , 2015, Nanoscale.

[62]  Jeong Ho Cho,et al.  Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. , 2015, Nano letters.

[63]  A. Holleitner,et al.  Photogating of mono- and few-layer MoS2 , 2015, 1503.00568.

[64]  F. Xia,et al.  Van der Waals heterostructures: Stacked 2D materials shed light. , 2015, Nature materials.

[65]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[66]  Ming C. Wu,et al.  Engineering light outcoupling in 2D materials. , 2015, Nano letters.

[67]  Diomedes Saldana-Greco,et al.  Ferroelectrically driven spatial carrier density modulation in graphene , 2015, Nature Communications.

[68]  Kaiyou Wang,et al.  Gate Tuning of High‐Performance InSe‐Based Photodetectors Using Graphene Electrodes , 2015, 1501.04051.

[69]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[70]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[71]  Hou-zhi Zheng,et al.  Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors , 2014, Scientific Reports.

[72]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[73]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[74]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[75]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[76]  W. Lu,et al.  Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature , 2014, Advanced materials.

[77]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[78]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[79]  G. Duscher,et al.  Pulsed Laser Deposition of Photoresponsive Two‐Dimensional GaSe Nanosheet Networks , 2014 .

[80]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[81]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[82]  G. Steele,et al.  Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. , 2014, Nano letters.

[83]  A. Sandhu,et al.  High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors , 2014, Nanotechnology.

[84]  Feng Wang,et al.  Two-dimensional materials: Atomically thin p-n junctions. , 2014, Nature nanotechnology.

[85]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[86]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[87]  C. Gu,et al.  CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. , 2014, Nanoscale.

[88]  G. Steele,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating , 2014, Nature Communications.

[89]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[90]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[91]  D. Geohegan,et al.  Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap , 2014, Nano Research.

[92]  R. Sankar,et al.  High performance and bendable few-layered InSe photodetectors with broad spectral response. , 2014, Nano letters.

[93]  Haixin Chang,et al.  Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. , 2014, ACS nano.

[94]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[95]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[96]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[97]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[98]  Bin Yu,et al.  Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. , 2014, ACS nano.

[99]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[100]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[101]  P. Ajayan,et al.  Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. , 2014, ACS nano.

[102]  V. Fal’ko,et al.  High-sensitivity photodetectors based on multilayer GaTe flakes. , 2014, ACS nano.

[103]  Aaron M. Jones,et al.  Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 , 2013, Nature Physics.

[104]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[105]  T. Murphy,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2013, Nature nanotechnology.

[106]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[107]  M. Terrones,et al.  Photosensor Device Based on Few‐Layered WS2 Films , 2013 .

[108]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[109]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[110]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[111]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[112]  Li Lin,et al.  Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions. , 2013, Journal of the American Chemical Society.

[113]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[114]  S. Lau,et al.  Ferroelectric polarization effects on the transport properties of graphene/PMN-PT field effect transistors , 2013 .

[115]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[116]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[117]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[118]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[119]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[120]  Fulvio Parmigiani,et al.  Direct view of hot carrier dynamics in graphene. , 2013, Physical review letters.

[121]  Andrea Cavalleri,et al.  Snapshots of non-equilibrium Dirac carrier distributions in graphene. , 2013, Nature materials.

[122]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[123]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[124]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[125]  M. Shim,et al.  Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. , 2013, Nano letters.

[126]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[127]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[128]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[129]  P. Avouris,et al.  Increased responsivity of suspended graphene photodetectors. , 2013, Nano letters.

[130]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[131]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[132]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[133]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[134]  Jonghwan Kim,et al.  Electrical control of silicon photonic crystal cavity by graphene. , 2012, Nano letters.

[135]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[136]  F. Koppens,et al.  Photoexcited carrier dynamics and impact-excitation cascade in graphene , 2012, 1209.4346.

[137]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[138]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[139]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[140]  Chih-Yuan Lu Future prospects of NAND flash memory technology--the evolution from floating gate to charge trapping to 3D stacking. , 2012, Journal of nanoscience and nanotechnology.

[141]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[142]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[143]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[144]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[145]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[146]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[147]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[148]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[149]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[150]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[151]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[152]  A. Neto,et al.  Two-dimensional crystals-based heterostructures: materials with tailored properties , 2012 .

[153]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[154]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[155]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[156]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[157]  Charles M Marcus,et al.  Hot carrier transport and photocurrent response in graphene. , 2011, Nano letters.

[158]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[159]  Ivo Rendina,et al.  Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives , 2010, Sensors.

[160]  K. Yao,et al.  Graphene field-effect transistors with ferroelectric gating. , 2010, Physical review letters.

[161]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[162]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[163]  Kwang S. Kim,et al.  Ambipolar Memory Devices Based on Reduced Graphene Oxide and Nanoparticles , 2010, Advanced materials.

[164]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[165]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[166]  D. Ginger,et al.  Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. , 2010, Nano letters.

[167]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[168]  N. M. R. Peres,et al.  The electronic properties of graphene and its bilayer , 2009 .

[169]  K. Hsieh,et al.  Future challenges of flash memory technologies , 2009 .

[170]  R. Bistritzer,et al.  Electronic cooling in graphene. , 2009, Physical review letters.

[171]  S. Sarma,et al.  Energy relaxation of hot Dirac fermions in graphene , 2008, 0812.1008.

[172]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[173]  A. Rogalski New material systems for third generation infrared photodetectors , 2008 .

[174]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[175]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[176]  Kinam Kim,et al.  Memory technology in the future , 2007 .

[177]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[178]  A. Bratkovsky,et al.  Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films , 2006, cond-mat/0608283.

[179]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[180]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[181]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[182]  A. Fazio,et al.  Flash Memory Scaling , 2004 .

[183]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[184]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[185]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[186]  Sidney R. Cohen,et al.  Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures , 1999 .

[187]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[188]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[189]  W. Kanzig,et al.  History of ferroelectricity 1938-1955 , 1987 .

[190]  Simon M. Sze,et al.  A floating gate and its application to memory devices , 1967 .

[191]  G. Shirane,et al.  Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study , 1952 .

[192]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .