Neural Correlates of Target Choice for Pursuit and Saccades in the Primate Superior Colliculus

[1]  C. Rashbass,et al.  The relationship between saccadic and smooth tracking eye movements , 1961, The Journal of physiology.

[2]  G R Grice,et al.  Stimulus intensity and response evocation. , 1968, Psychological review.

[3]  Grice Gr,et al.  Stimulus intensity and response evocation. , 1968 .

[4]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[5]  S. Link,et al.  A sequential theory of psychological discrimination , 1975 .

[6]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[7]  G. Logan,et al.  On the ability to inhibit simple and choice reaction time responses: a model and a method. , 1984, Journal of experimental psychology. Human perception and performance.

[8]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  D. Meyer,et al.  The point of no return in choice reaction time: controlled and ballistic stages of response preparation. , 1986, Journal of experimental psychology. Human perception and performance.

[10]  E. J. Morris,et al.  Visual motion processing and sensory-motor integration for smooth pursuit eye movements. , 1987, Annual review of neuroscience.

[11]  R. Wurtz,et al.  Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. , 1988, Journal of neurophysiology.

[12]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[13]  L E Mays,et al.  Signal transformations required for the generation of saccadic eye movements. , 1990, Annual review of neuroscience.

[14]  E. L. Keller,et al.  Generation of smooth-pursuit eye movements: neuronal mechanisms and pathways , 1991, Neuroscience Research.

[15]  A. Jacobs,et al.  The effects of target discriminability and retinal eccentricity on saccade latencies: An analysis in terms of variable-criterion theory , 1990, Psychological research.

[16]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  David L. Sparks,et al.  Movement selection in advance of action in the superior colliculus , 1992, Nature.

[18]  D L Sparks,et al.  Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades. , 1993, Journal of neurophysiology.

[19]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. , 1993, Journal of neurophysiology.

[20]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[21]  W Schwarz,et al.  A diffusion model of early visual search: Theoretical analysis and experimental results , 1993, Psychological research.

[22]  H E Egeth,et al.  Response time and accuracy revisited: converging support for the interactive race model. , 1993, Journal of experimental psychology. Human perception and performance.

[23]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. Schall,et al.  Countermanding saccades in macaque , 1995, Visual Neuroscience.

[25]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[26]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[27]  D. Robinson,et al.  Shared neural control of attentional shifts and eye movements , 1996, Nature.

[28]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[29]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[30]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[31]  R J Krauzlis,et al.  Shared motor error for multiple eye movements. , 1997, Science.

[32]  S G Lisberger,et al.  Neuronal responses in visual areas MT and MST during smooth pursuit target selection. , 1997, Journal of neurophysiology.

[33]  P. Glimcher,et al.  Responses of intraparietal neurons to saccadic targets and visual distractors. , 1997, Journal of neurophysiology.

[34]  M. A. Basso,et al.  Modulation of Neuronal Activity in Superior Colliculus by Changes in Target Probability , 1998, The Journal of Neuroscience.

[35]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[36]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[37]  F A Miles,et al.  Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. , 1998, Journal of neurophysiology.

[38]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[39]  F. A. Miles,et al.  Target Selection for Pursuit and Saccadic Eye Movements in Humans , 1999, Journal of Cognitive Neuroscience.

[40]  R. Carpenter,et al.  Countermanding saccades in humans , 1999, Vision Research.

[41]  D. Sparks,et al.  Conceptual issues related to the role of the superior colliculus in the control of gaze , 1999, Current Opinion in Neurobiology.

[42]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[43]  R. Krauzlis,et al.  Tracking with the mind’s eye , 1999, Trends in Neurosciences.

[44]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[45]  N J Gandhi,et al.  Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region. , 1999, Journal of neurophysiology.

[46]  R. Ratcliff,et al.  Connectionist and diffusion models of reaction time. , 1999, Psychological review.

[47]  G H Recanzone,et al.  Effects of attention on MT and MST neuronal activity during pursuit initiation. , 2000, Journal of neurophysiology.

[48]  R J Krauzlis,et al.  Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. , 2000, Journal of neurophysiology.

[49]  R J Krauzlis,et al.  Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys. , 2000, Journal of neurophysiology.

[50]  W T Newsome,et al.  Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. , 2001, Journal of neurophysiology.

[51]  W T Newsome,et al.  Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus. , 2001, Journal of neurophysiology.

[52]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[53]  Lance M. Optican,et al.  The neurology of eye movements, third edition1 , 2001 .

[54]  Stephen G. Lisberger,et al.  Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex , 2001, Nature.

[55]  Jeffrey D. Schall,et al.  Neural basis of deciding, choosing and acting , 2001, Nature Reviews Neuroscience.

[56]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[57]  O. Hikosaka,et al.  Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey , 1996, Experimental Brain Research.

[58]  S. Snyder,et al.  Separate Signals for Target Selection and Movement Specification in the Superior Colliculus , 2022 .